Downloaded from Stanmorephysics.com

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

GRADE 12

NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES P2 (CHEMISTRY)

COMMON TEST

JUNE 2019

.

MARKS: 100

TIME: 2 Hours

This question paper consists of 13 pages including a special sheet for question 5.6.2 and data sheets.

)

INSTRUCTIONS AND INFORMATION

- 1. Write your name and other information in the appropriate spaces on the ANSWER BOOK.
- 2. The question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH guestion on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave one line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable pocket calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places where applicable.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.6) in the answer book, for example 1.8 D.

1.1 The structural formula of an organic compound is given below:

The IUPAC name of this organic compound is . . .

- A 1 methylpent 3 yne.
- B 2 methylpent 3 yne.
- C 4 methylpent 2 yne.

D
$$1,1 - \text{dimethylbut} - 2 - \text{yne}$$
. (2)

- 1.2 Under the same conditions of atmospheric pressure, 2 methylpropane:
 - A Has a lower boiling point than butane.
 - B Has a higher boiling point than butane.
 - C Has the same boiling point as butane.
 - D Has the same vapour pressure as butane.

(2)

1.3 Consider the following chemical reaction, in which the acid is in excess:

$$Zn(s) + 2 HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$
 $\Delta H < 0$

Which set of changes to the reaction conditions will give the GREATEST INCREASE in the reaction rate?

Α	Increase pressure	Add a catalyst
В	Increase temperature	Add a catalyst
С	Use zinc powder	Increase volume of the acid
D	Increase the volume of the acid	Increase temperature

(2)

1.4 Carbon dioxide reacts with carbon in a closed system.

$$CO_2(g) + C(s) \rightleftharpoons 2 CO(g)$$

$$\Delta H > 0$$

Which ONE of the following changes at equilibrium will NOT affect the YIELD of CO (g)?

- A Increasing the pressure.
- B Increasing the temperature.
- C Adding more carbon at constant temperature.
- D Adding more carbon dioxide at constant temperature.
- 1.5 The expression for the equilibrium constant, (Kc), of a hypothetical reaction is given as follows:

$$\frac{[A]^3}{[C][D]^2}$$

Which ONE of the following equations for a reaction at equilibrium matches the above expression?

A
$$C(g) + 2 D(g) \rightleftharpoons 3 A(s)$$

B
$$C(aq) + 2 D(aq) \Rightarrow 3 A(\ell)$$

$$C C(g) + D_2(g) \rightleftharpoons 3 A(g) + B(s)$$

$$D \quad C(aq) + 2 D(aq) \Rightarrow 3 A(aq) + B(s)$$
 (2)

1.6 An acid-base reaction occurs as follows:

$$HCl(aq) + NH_3(aq) \rightleftharpoons NH_4+(aq) + Cl(aq)$$

The TWO bases in the above reaction are:

- A HCl(aq) and NH₄+(aq).
- B HCl(aq) and Cl (aq).
- C $NH_3(aq)$ and $NH_4^+(aq)$.
- D NH₃(aq) and $C\ell$ (aq). (2)

[12]

(2)

Downloaded from Stanmorephysics.com

QUESTION 2 (Start on a new page.)

The letters A to D in the table below represent FOUR organic compounds.

A	H H H 	В	H H O H H H O C - C - H H CH3 H H
С	propyl butanoate	D	H H

Use the information in the table to answer the questions that follow.

- 2.1 Compounds **A** and **B** belong to the same homologous series.
 - 2.1.1 State the definition of *homologous series.* (2)
 - 2.1.2 Name the homologous series to which compounds **A** and **B** belong. (1)
- 2.2 Compounds **A** and **B** are isomers.
 - 2.2.1 What are isomers? (2)
 - 2.2.2 What TYPE of isomers are compounds A and B? (1)
- 2.3 Write down the **IUPAC** name of compound B. (2)
- 2.4 Write down the STRUCTURAL FORMULA of compound C. (2)
- 2.5 Compound **D** is the structural formula of a monomer.
 - 2.5.1 Write down the general formula of the homologous series to which compound **D** belongs. (1)
 - 2.5.2 Why is compound **D** said to be unsaturated? (1)
 - 2.5.3 Write down the structural formula of the polymer that is prepared from compound **D**. (2)

[14]

QUESTION 3 (Start on a new page.)

The table below shows the boiling points of different organic compounds that were obtained during an investigation:

Name	Molecular Mass (g.mol-1)	Boiling Point (°C)
methanoic acid	46	100
Ethanol	46	78
propanoic acid	74	141
butan – 1 – ol	74	118

3.1	Write down the definition of boiling point.	(2)
3.2	Write down a suitable investigative question for this investigation.	(2)
3.3	Besides the conditions for determining boiling point, state ONE controlled variable for this investigation.	(1)
3.4	Explain the trend in boiling points as shown in the above table by referring to the types and strengths of the intermolecular forces and the energies involved.	(4)
3.5	Which ONE of the above four compounds has the lowest vapour pressure?	(1) [10]

QUESTION 4 (Start on a new page.)

The reactions I to IV below are organic reactions:

REACTION I:	but - 1 - ene + Cℓ₂ →					
REACTION II:	W + Cℓ₂ → 2 - chlorobutane + Z					
REACTION III:	CH ₃					
REACTION IV:	CH ₃ CH ₃ — CH ₂ — C− Br —→ CH ₃					

4.1 Name the type of reaction (SUBSTITUTION, ADDITION or ELIMINATION) that takes place in:

- 4.1.1 REACTION I. (1)
- 4.1.2 REACTION II. (1)

4.2 Write down the . . .

- 4.2.1 IUPAC name of the product formed in REACTION I. (2)
- 4.2.2 STRUCTURAL FORMULA of compound W in REACTION II. (2)
- 4.2.3 Name or formula of product Z. (1)
- 4.3 State TWO reaction conditions needed for REACTION III. (2)
- 4.4 Is the product 2 methylbut 2 ene, the MAJOR or MINOR product of REACTION III? (1)
- 4.5 REACTION IV takes place in the presence of aqueous potassium hydroxide and mild heat. Write down the STRUCTURAL FORMULA of the major organic product that forms.

QUESTION 5 (Start on a new page.)

The apparatus shown below is used to investigate the rate at which hydrogen gas is produced when powdered magnesium is reacted with an EXCESS of a dilute hydrochloric acid solution.

The spontaneous reaction that takes place is represented by the following balanced equation:

$$Mg(s) + 2 HCl(aq) \longrightarrow MgCl_2(aq) + H_2(q)$$

The volume of hydrogen gas produced during the reaction was measured at 30 second intervals and recorded in the table below:

Time(seconds)	0	30	60	90	120	150	180	210
Volume(H ₂) in dm ³	0	18	26	31	34	36	36	36

- 5.1 How long, in seconds, does the reaction take to reach completion? (1)
- What would be the effect of using a strip of magnesium metal instead of the magnesium powder on the above reaction rate? (1)
- 5.3 Calculate the average reaction rate in dm³.s⁻¹ during the 60 to 90 second interval. (3)
- It can be seen from the table that the reaction rate decreases with time. Explain this observation in terms of the collision theory. (3)
- Calculate the mass of magnesium powder that was used in this investigation?

 Take the molar gas volume to be 24,83 dm³. (6)

Downloaded from Stanmorephy Scs. com

5.6 A graph for the above reaction is given below:

5.6.1 What name is given to the above graph?

(1)

5.6.2 Draw (on the special answer sheet provided), the curve that will be obtained if the reaction was carried out a LOWER temperature. Label this curve L.

(2) [17]

QUESTION 6 (Start on a new page.)

A chemical equilibrium is established at 310 K, in a container when thiocyanate ions (SCN⁻) are added to iron (III) ions (Fe³⁺). The resulting aqueous solution is a dark red colour.

The equation representing the equilibrium reaction and the colours of each species involved is given below.

$$Fe^{3+}_{(aq)}$$
 + $SCN^{-}_{(aq)}$ \rightleftharpoons $FeSCN^{2+}_{(aq)}$ (pale orange) (colourless) (dark red)

6.1 State what is meant by the phrase "A chemical equilibrium".

(2)

The K_c value for the above equilibrium at 310 K is 4,0.

The initial concentration of each of the solutions is **X** mol.dm⁻³.

Calculate the value of **X**, if the equilibrium concentration of the FeSCN²⁺ ions is 1 mol.dm⁻³.

(7)

A concentrated solution of sodium fluoride (NaF) is now added to the above equilibrium mixture.

The following reaction takes place in the container.

$$3 F(aq) + Fe^{3+}(aq) \rightarrow FeF_3(s)$$

6.3.1 State Le Chatelier's Principle.

(2)

The FeF₃ formed is insoluble.

- 6.3.2 What colour change, if any, will take place in the original dark red solution when the NaF is added?
- 6.3.3 Explain the answer to question 6.3.2.

(3) [**15**]

(1)

QUESTION 7 (Start on a new page.)

7.1 The hydrogen carbonate ion (HCO₃-) is an ampholyte.

7.1.1 Write down the definition of an ampholyte.

(2)

7.1.2 Write a balanced equation to show the reaction that occurs when the hydrogen carbonate ion reacts with water.

(3)

7.1.3 Refer to Arrhenius's theory and give a reason why the hydrogen carbonate ion behaves as a base.

(2)

7.2 Some magnesium hydroxide is dissolved in distilled water to make a solution of volume 200 cm³.

During a titration 16 cm³ of the magnesium hydroxide solution is completely neutralized by 28 cm³ of a hydrochloric acid solution of pH 0,108.

The balanced equation for the reaction that takes place is given below:

$$2 HCl(aq) + Mg(OH)_2(aq) = MgCl_2(aq) + 2 H_2O(l)$$

- 7.2.1 Why is magnesium hydroxide a **strong** base?
- 7.2.2 Calculate the concentration of the hydrochloric acid solution. (3)
- 7.2.3 Calculate the mass of magnesium hydroxide that was initially dissolved in the distilled water.

(8) **[20]**

(2)

TOTAL: 100

Downloaded from Stanmoreph Sics.com

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T ⁰	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{C_a V_a}{C_b V_b} = \frac{n_a}{n_b}$	$pH = -log[H_3O^+]$
$K_W = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by}$	298 K

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEME NSC

18 (VIII) 2 4 He 4	10 Ne 20 18 18 40	36 Kr 84 54 Xe 131	86 Rn 71 Lu 175
(VII)	4,0 4,0 19 19 17 19 35,5 35,5	2,5 2,8 35 80 Br 127 127	70 Yb 7173
16 (VI)	8,5 8,2 8 O 6 6 0 8	2,4 3,4 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	69 Tm 169
(\$)	0,6 r,s > S 4 d E	33 0,0 As 75 75 1,9 Sb 122	83 209 68 Er 167
14 (IV)	6,2 8,1 8,2 2 2 8 8,4 2 0 8	<u> </u>	82 82 207 67 Ho 165
13 (III)	1,5 Ag 13 27 27 27 27 27 27 27 27 27 27 27 27 27	31 70 70 7,7 115	81 204 204 66 Dy 163
12		30 4, Zn 65 48 7, Cd 112	80 Hg 201 201 65 Tb 159
7			Au 197 197 64 Gd
10	Symbol Simbool comic mass	8,1 28 2,2 46 46 59 106	78 Pt 195 63 Eu 152
9 ic number omgetal	<u>#</u> # # #	27 27 2,2 2,3 2,9 2,9 103 103	192 192 62 Sm 150
8 9 Atomic numbe	29 9, Cu 63,5 † relative	26 2,2 3,2 44 44 101	76 OS 190 61 Pm
∀	vity witeit oximate	3°L 6°L	75 Re 186 00 Nd 144
6 EUTEL	Electronegativity Elektronegatiwiteiī Approxim Benaderd	1,8 H 22 S 4 4 2 4 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	74 W W 184 184 Pr 141
5 6 KEY/ <i>SLEUTEL</i>	Electr Elektro	6,1 51 81 Nb 82	73
4		22 22 1,1 4,1 4,1 4,1 4,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6	72 179 179
м		21.2 Sc. 1,3 Sc. 2,1 45.2 × 45.2 × 88	57 La 139 89 Ac
2 🖹	2,1 Be 4 9 9 42 24 12	0,τ 0,τ 8 0 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 %	56 6,9 Ba 137 137 226
- E - I -	23 Na 11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	19 7 33 39 8 86	55 Cs 133 87
1,2	0,r e,0	8,0 8,0	۲٬0 ۲٬0

<u>ال</u> 3

S 40

Md

5 E

ES

Ct

BK

S C T

Am

Pu

Np

∪ 238

Pa

Th 232

DOWNPECIAL ANSWER SHEET-FOR QUESTION 5.6.2

I NI A BAIC	
NAME	· ·
	l ;
	i ·
	· · · · · · · · · · · · · · · · · · ·
1	· · · · · · · · · · · · · · · · · · ·
	· I
1	
1	
1	l ·
1	· · · · · · · · · · · · · · · · · · ·
I	l ·
GRADE	· · · · · · · · · · · · · · · · · · ·
1 1 - M / / / / / M	· · · · · · · · · · · · · · · · · · ·
MITABLE	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· I
}	
ŀ	

GRADE 12

NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES P2 (CHEMISTRY)

COMMON PAPER

JUNE 2019

MARKING GUIDELINE

MARKS : 100

This marking guideline consists of 7 pages.

The marking guidelines as per 2014 Examination Guidelines, pages 34-37 must be applied when marking this Paper.

QUESTION Oaded from Stanmorephysics.com

1.1 $C \checkmark \checkmark$ (2)

 $1.2 \quad \mathsf{A}\checkmark\checkmark \tag{2}$

1.3 B√√ (2)

 $1.4 \quad \mathsf{C}\checkmark\checkmark \tag{2}$

1.5 D√√ (2)

1.6 D✓✓ (2)
[12]

QUESTION 2

2.4

2.1.1 <u>a series of organic compounds that can be described by the same general formula</u> ✓✓
OR <u>a series of organic compounds in which one member differs from the next by a CH₂ group.</u> (2 or 0)

2.1.2 alcohols ✓ (1)

2.2.1 organic molecules with the same molecular formulae ✓ but different structural formulae ✓(2)

2.2.2 positional√ (1)

2.3 <u>2 - methylbutan – 2 – ol</u> ✓ functional group ✓ whole structure correct (2)

Whole structure correct: 2/2
Only functional group correct 1/2
More than one functional group 0/2

 $2.5.1 \text{ C}_{n}H_{2n}\sqrt{}$ (1)

Н

Η

Η

2.5.2 contains a double bond between atoms of carbon. ✓ (1)

2.5.3 (1)

 $\begin{pmatrix}
H & H \\
C & C
\end{pmatrix}_{n}$ (2)

If hydrogen missing: $\frac{1}{2}$

Η

Η

[14]

(2)

QUESTION 3

3.1 <u>temperature at which the vapour pressure of a substance equals the atmospheric pressure.</u> ✓ ✓

(2)

THE FOLLOWING QUESTIONS HAVE TWO POSSIBLE ANSWERS.

3.2 What is the relationship between boiling point and type of functional group/homologous series/chain length?✓ (2)

√ correct variables

✓ relationship stated as a question

3.3 molecular mass√

(1)

3.4

- carboxylic acids have a higher boiling point than alcohols with the same molecular mass√
- carboxylic acid has TWO sites for hydrogen bonding compared to the alcohols which have only ONE site√
- intermolecular forces between acid molecules are therefore stronger than between alcohol molecules√
- more energy is required to overcome intermolecular forces between acid molecules√

OR

- alcohols have a lower boiling point than carboxylic acids with the same molecular mass √
- alcohols which have only ONE site compared to the carboxylic acid has TWO sites for hydrogen bonding ✓
- intermolecular forces between alcohol molecules are therefore weaker than between carboxylic acid molecules√
- less energy is required to overcome intermolecular forces between alcohol molecules√

 (4)

OR

3.2 What is the relationship between boiling point and length of carbon change? ✓✓ (2)

√ correct variables

✓ relationship stated as a question

3.3 Type of functional groups ✓

(1)

3.4 As the length of the chains ✓ of the carboxylic acids and alcohols increases the boiling points increase. ✓

There will be more sites for London Forces. ✓

More energy needed to separate the molecules. ✓

(4)

3.5 propanoic acid√

(1) **[10]**

Liol

QUESTION 4

4.2.1 1,2 - dichlorobutane
$$\checkmark$$
 (2)

4.2.2

4.2.3 hydrogen chloride/HCℓ✓ (1)

4.3 concentrated KOH/NaOH in ethanol ✓ heat (under reflux) ✓ (2)

4.5

- Whole structure correct: 2/2
- Only functional group correct 1/2
- More than one functional group 0/2

(2)

[12]

QUESTION 5

5.2 reaction will take longer than 150 s to reach completion/rate of reaction decreases ✓ (1)

5.3

rate =
$$\frac{\Delta V(H_2)}{\Delta t}$$

rate =
$$\frac{31 - 26}{90 - 60} \checkmark$$

= 0,167 cm³.s⁻¹ \checkmark

(3)

5.4 Amount of magnesium/concentration of HCl decreases ✓ Number of collisions per unit time decreases ✓ Number of effective collisions per unit time decreases ✓

(3)

5.5

(6)

5.6.1 Maxwell – Boltzmann Distribution curve ✓

(1)

5.6.2

[18]

QUESTION 6

6.1 The system where the rate of the forward reaction equals the rate of the reverse reaction. ✓ ✓

(2)

6.2

	Fe ³⁺	SCN-	FeSCN ²⁺]
Initial concentration (mol.dm ⁻³)	X	х	0	√
Change(mol.dm ⁻³)	-1	-1	+1	ratio ✓
Equilibrium	x – 1	x – 1	1	
concentration(mol.dm ⁻³)				✓
[FeSCN ²⁺] ²	·/ -	(1)	- 4	-

$$K_{c} = \frac{[FeSCN^{2+}]^{2}}{[Fe^{3+}][SCN^{-}]} \checkmark = \underbrace{\begin{pmatrix} (1) \\ (x-1)(x-1) \end{pmatrix}}_{} = 4 \checkmark$$

$$X = 1,5 \text{ mol. dm}^{-3} \checkmark$$
(7)

7.1.1 A substance that can act as an acid or a base ✓ ✓ (2)

$$7.1.2 HCO3- + H2O \Rightarrow H2CO3 + OH- LHS\checkmark RHS\checkmark BAL\checkmark (3)$$

7.1.3 HCO₃ is not an Arrhenius base ✓ ✓

OR

Accept:

 HCO_3^- produces hydroxyl ions/hydroxide ions/OH $^-$ when dissolved in water according to the given reaction \checkmark \checkmark

(2)

- 7.2.1 Dissociates completely in water to form hydroxide/hydroxyl (OH⁻) ions. ✓✓ (2)
- 7.2.2

pH =
$$-\log[H_3O^+] \checkmark$$

 $0.108 = -\log[H_3O^+] \checkmark$
 $[H_3O^+] = 0.78 \text{ mol.dm}^{-3} \checkmark$

(3)

NSC-Marking guideline

TOTAL: 100

PLEASE NOTE:

DUE TO THE TECHNICAL ERROR IN QUESTION 2.2.2 THE TOTAL MARKS HAS BEEN ADJUSTED TO 99.