downloaded from Stanmorephysics.com education

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

COMMON TEST

MARCH 2019

MARKS: 75

TIME: $1\frac{1}{2}$ hours

This question paper consists of 6 pages and 2 Diagram Sheets.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
 - Diagrams are NOT necessarily drawn to scale.
- 7. Write neatly and legibly.
- 8. Diagrams for QUESTION 4.1, QUESTION 4.2, QUESTION 5.1 and QUESTION 5.2
- 9. on the DIAGRAM SHEETS provided.
 Detach the DIAGRAM SHEETS and hand in together with your Answer Book.

downloaded from Stanmore physics com

GRADE 11-NSC

QUESTION 1

1.1 Solve for x:

1.1.1
$$7x^2 - 2x - 3 = 0$$
 (correct to TWO decimal places) (3)

1.1.2
$$(x-2)^2 - 4 = 0$$
 (3)

$$1.1.3 \qquad \sqrt{7x+2} + 2x = 0 \tag{4}$$

$$1.1.4 x^2 - x - 56 < 0 (3)$$

Solve for x and y simultaneously:
$$2x + y = 1$$
 and $2x^2 - xy + y^2 = 4$ [19]

QUESTION 2

2.1 Solve for x without the use of a calculator:
$$x^{\frac{3}{4}} = 64$$
 (2)

2.2 Simplify without the use of a calculator :

$$\frac{5^{-x}.125^{1-x}.25^{2x}}{5} \tag{3}$$

$$2.2.2 \qquad \sqrt{12} - \sqrt{147} + 3^{1,5} \tag{3}$$

2.3 If
$$\frac{5^{2006} - 5^{2004} + 24}{5^{2004} + 1} = a$$
, calculate a without the use of a calculator. (3)

QUESTION 3

ANSWER QUESTION 3 WITHOUT USING A CALCULATOR.

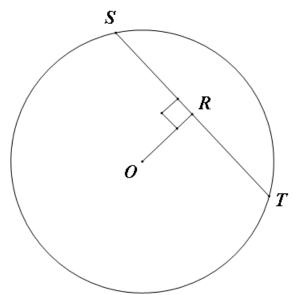
3.1 Given:
$$\tan \theta = -\frac{9}{40}$$
 and $180^{\circ} < \theta < 360^{\circ}$.

Use a sketch to determine the value of $\sin \theta + \cos \theta$. (4)

3.2 Simplify fully:

$$\frac{\sin(90^{\circ} - \theta).\tan(360^{\circ} - \theta).\sin(\theta - 180^{\circ})}{1 - \cos^{2}\theta} \tag{6}$$

Determine the value of the following in terms of p, if $\cos 32^{\circ} = p$:

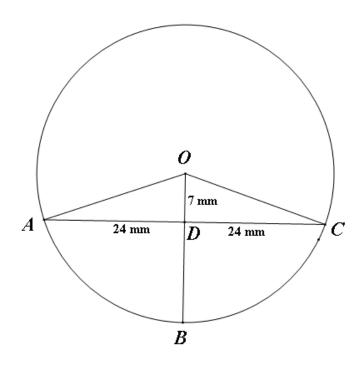

3.3.1
$$\cos 212^{\circ}$$
 (2)

3.3.2
$$\sin(-328^\circ)$$
 (3) [15]

GIVE REASONS FOR YOUR STATEMENTS AND CALCULATIONS IN QUESTIONS 4 AND 5.

QUESTION 4

4.1 In the diagram, O is the centre of the circle and R is a point on chord ST, such that OR is perpendicular to ST.

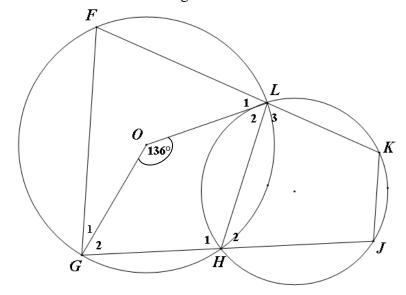

Prove the theorem which states that SR = RT. (5)

downloaded from Stanmorephysics.com

downloaded from Stanmorephysics Com

GRADE 11-NSC

4.2 In the diagram, O is the centre of the circle and D is a point on chord AC such that AD = DC = 24 mm. OD is drawn and produced to meet the circle at B. OD = 7 mm. OA and OC are drawn.

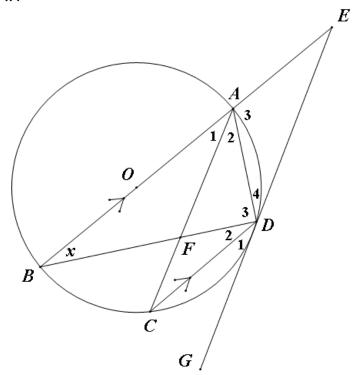


Calculate the length of BD.

(5) [**10**]

QUESTION 5

In the diagram two circles intersect at L and H. O is the centre of the circle passing through F, G, H and L. GO and LO are drawn. LHJK is a cyclic quadrilateral. FLK and GHJ are straight lines. GOL = 136°



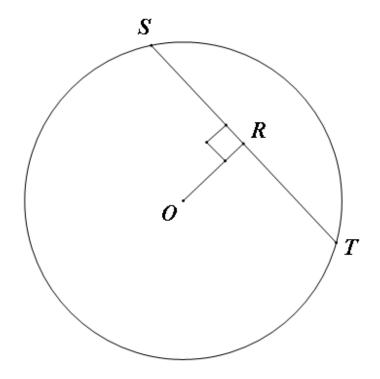
5.1.1 Calculate the size of \hat{F} .

(2)

5.1.2 Calculate the size of \hat{K} . (4)

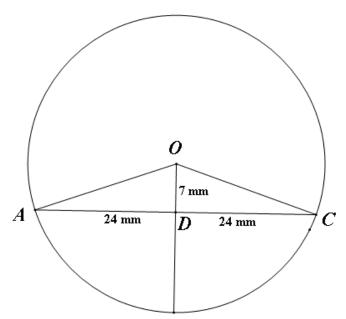
In the diagram, O is the centre of the circle. Diameter BOA is produced to E such that EDG is a tangent to the circle at D. C is a point on the circle such that BA \parallel CD. AD, BD and AC are drawn. F is a point of intersection of AC and BD. Let $\hat{B} = x$.

- 5.2.1 Write down, with reasons, four other angles each equal to x. (6)
- 5.2.2 Determine the size of \hat{E} in terms of x. (4)
- 5.2.3 Prove that CA is a tangent to the circle passing through A, D and E. (4)


[20]

TOTAL: 75

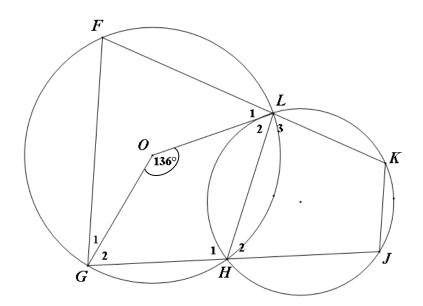
NAME & SURNAME:


DIAGRAM SHEET 1

QUESTION 4.1

QUESTION 4.2

TEAR OFF



downloaded from Stahmorephysics.com

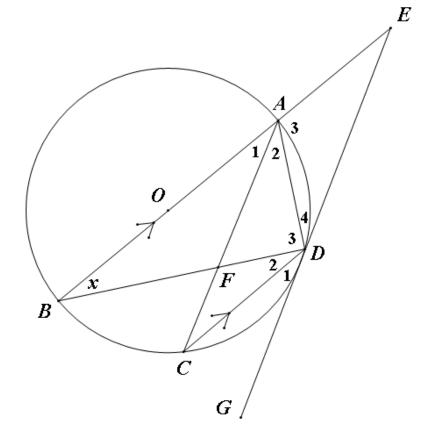

NAME & SURNAME:

DIAGRAM SHEET 2

QUESTION 5.1

QUESTION 5.2

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

MATHEMATICS

COMMON TEST

MARCH 2019

MARKING GUIDELINES

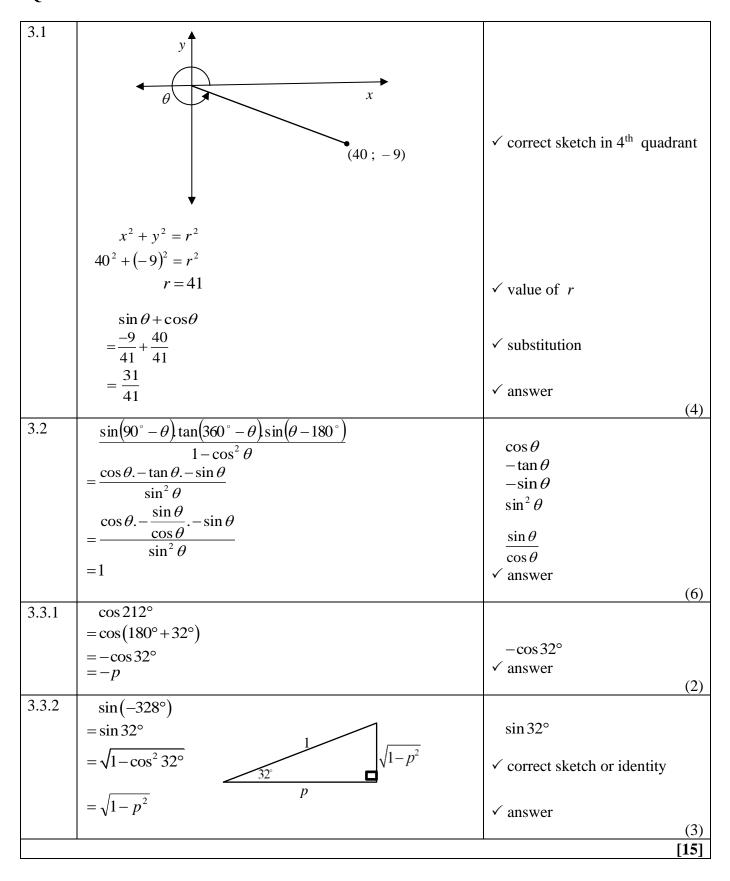
NATIONAL SENIOR CERTIFICATE

GRADE 11

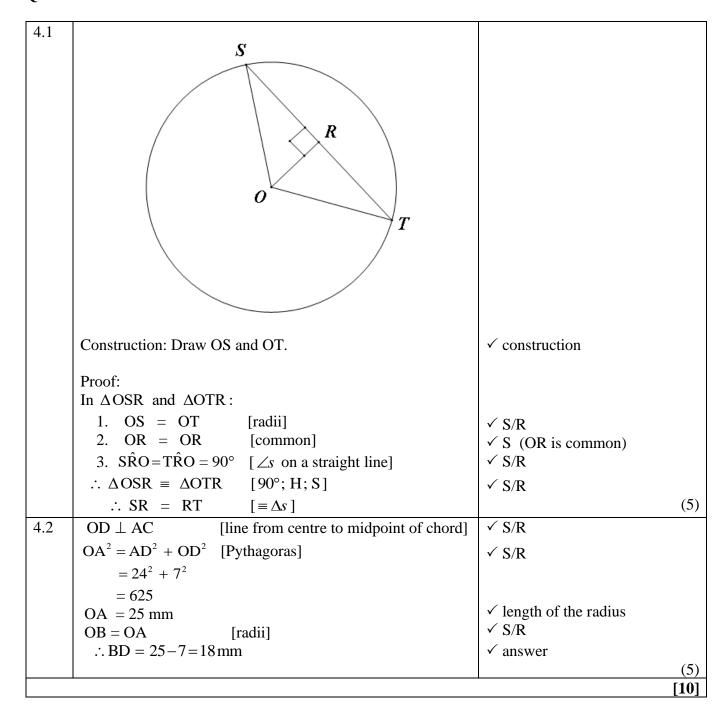
downloaded from Stanmorephysics.com

MARKS: 75

These marking guideline consists of 8 pages.


GEOMETRY • MEETKUNDE		
C	A mark for a correct statement (A statement mark is independent of a reason)	
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)	
D	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)	
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)	
S/R	Award a mark if statement AND reason are both correct	
	Ken 'n punt toe as die bewering EN rede beide korrek is	

1.1.1		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(7)(-3)}}{2(7)}$ $x = -0.53 \text{ or } x = 0.81$	✓ substituting in correct formula ✓ x-values ✓ x-values (3)
1.1.2	$(x-2)^{2} - 4 = 0$ $(x-2)^{2} = 4$ $x-2 = \pm 2$ $x = 4 \text{ or } x = 0$	✓ isolate $(x-2)^2$ ✓ ± 2 ✓ both answers
	OR	OR
	$(x-2)^{2} - 4 = 0$ $x^{2} - 4x + 4 - 4 = 0$ $x^{2} - 4x = 0$ $x(x-4) = 0$ $x = 4 \text{ or } x = 0$	$✓ x^2 - 4x + 4$ ✓ factors ✓ both answers (3)
1.1.3	$ \sqrt{7x + 2} + 2x = 0 (\sqrt{7x + 2})^2 = (-2x)^2 7x + 2 = 4x^2 $	\checkmark isolate $\sqrt{7x+2}$
	$4x^2 - 7x - 2 = 0$ (4x + 1)(x - 2) = 0	✓ standard form ✓ factors
	$x = -\frac{1}{4} \text{ or } x = 2$ $\therefore x = -\frac{1}{4} \text{ only}$	✓ correct solution
	4 -	(4)


	$x^2 - x - 56 < 0$	
	(x-8)(x+7) < 0	✓ correct factors
	CV x = 8 or x = -7	
	<u>+ </u>	
	-7 < x < 8	✓✓ correct solution
1.2	$2x + y = 1$ and $2x^2 - xy + y^2 = 4$	(3)
1.2	$\begin{vmatrix} 2x + y = 1 & \text{and} & 2x - xy + y & = 4 \\ y = 1 - 2x & & \end{vmatrix}$	y=1-2x
	$\begin{vmatrix} y-1-2x \\ 2x^2 - x(1-2x) + (1-2x)^2 = 4 \end{vmatrix}$	✓ substitution
	$2x^{2} - x(1-2x) + (1-2x) = 4$ $2x^{2} - x + 2x^{2} + 1 - 4x + 4x^{2} = 4$	V Substitution
	$\begin{vmatrix} 2x - x + 2x + 1 - 4x + 4x &= 4 \\ 8x^2 - 5x - 3 &= 0 \end{vmatrix}$	✓ standard form
	(8x+3)(x-1)=0	✓ factors
	$x = -\frac{3}{8}$ or $x = 1$	
	$x = -\frac{\pi}{8}$ or $x = 1$	$\checkmark x$ values
	$y = 1 - 2\left(-\frac{3}{8}\right)$ or $y = 1 - 2(1)$	
	$y = 1\frac{3}{4}$ or $y = -1$	✓y values (6)
	OR	OR
	$2x + y = 1$ and $2x^2 - xy + y^2 = 4$	
	$2x + y = 1$ and $2x^2 - xy + y^2 = 4$ $x = \frac{1 - y}{2}$	$x = \frac{1 - y}{2}$
		$x = \frac{1 - y}{2}$ substitution
	$x = \frac{1 - y}{2}$	2
	$x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$	2
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$	2
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$ $1-2y+y^2-y+y^2+2y^2-8 = 0$	✓substitution
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$ $1-2y+y^2 - y + y^2 + 2y^2 - 8 = 0$ $4y^2 - 3y - 7 = 0$ $(4y-7)(y+1) = 0$	✓ substitution ✓ standard form ✓ factors
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$ $1-2y+y^2-y+y^2+2y^2-8=0$ $4y^2-3y-7=0$	✓ substitution ✓ standard form
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$ $1-2y+y^2 - y + y^2 + 2y^2 - 8 = 0$ $4y^2 - 3y - 7 = 0$ $(4y-7)(y+1) = 0$ $y = 1\frac{3}{4} \text{ or } y = -1$	✓ substitution ✓ standard form ✓ factors
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$ $1-2y+y^2 - y + y^2 + 2y^2 - 8 = 0$ $4y^2 - 3y - 7 = 0$ $(4y-7)(y+1) = 0$ $y = 1\frac{3}{4} \text{ or } y = -1$ $x = \frac{1-1\frac{3}{4}}{2} \text{ or } x = \frac{1-(-1)}{2}$	✓ substitution ✓ standard form ✓ factors ✓ y values
	$x = \frac{1-y}{2}$ $2\left(\frac{1-y}{2}\right)^2 - y\left(\frac{1-y}{2}\right) + y^2 = 4$ $2\left(\frac{1-2y+y^2}{4}\right) - y\left(\frac{1-y}{2}\right) + y^2 - 4 = 0$ $1-2y+y^2 - y + y^2 + 2y^2 - 8 = 0$ $4y^2 - 3y - 7 = 0$ $(4y-7)(y+1) = 0$ $y = 1\frac{3}{4} \text{ or } y = -1$	✓ substitution ✓ standard form ✓ factors

downloaded from Stanmorephysics.com

2.1	3	
2.1	$x^{\frac{3}{4}} = 64$	
	$\left(x^{\frac{3}{4}}\right)^{\frac{4}{3}} = (2^6)^{\frac{4}{3}}$	\checkmark raising both sides to the $\frac{4}{3}$
	$x = 256 \text{ or } 2^8$	✓ answer (2)
2.2.1	$\frac{5^{-x}.125^{1-x}.25^{2x}}{5}$	
	5	
	$=\frac{5^{-x}.\left(5^{3}\right)^{1-x}.\left(5^{2}\right)^{2x}}{5}$	✓ rewriting as base 3
	$=\frac{5^{-x}.5^{3-3x}.5^{4x}}{5}$	
	$=5^{-x+3-3x+4x-1}$	✓ using exponential rules
	$=5^2$	
	=25	✓ answer (3)
2.2.2	$\sqrt{12} - \sqrt{147} + 3^{1,5}$	
	$= \sqrt{4 \times 3} - \sqrt{49 \times 3} + 3^{\frac{3}{2}}$ $= 2\sqrt{3} - 7\sqrt{3} + \sqrt{9 \times 3}$	✓ simplifying surds
	$= 2\sqrt{3} - 7\sqrt{3} + 3\sqrt{3}$	$\sqrt{3\sqrt{3}}$
	$=-2\sqrt{3}$	✓ answer
2.3	72006 72004 · 2.4	(3)
2.3	$\frac{5^{2006} - 5^{2004} + 24}{5^{2004} + 1} = a$	
	$\frac{5^{2004}(5^2-1)+24}{5^{2004}+1} = a$	√ factorising
	$\frac{5^{2004}(24) + 24}{5^{2004} + 1} = a$	
	$\frac{24(5^{2004}+1)}{5^{2004}+1} = a$	√ factorising
	a=24	√answer
		(3)
		[11]

downloaded from Stanmorephysics.com

downloaded from Stanmorephysics.com

5.1.1	$\hat{F} = \frac{1}{2}G\hat{O}L$ [\angle at centre = 2× \angle at circumference]	✓ R
	=68°	✓ answer (2)
5.1.2	$\hat{F} + \hat{H}_1 = 180^{\circ}$ [opp. $\angle s$ of cyclic quadrilateral]	✓ R
	$\hat{H}_1 = 180^{\circ} - 68^{\circ}$	
	=112°	\checkmark size of \hat{H}_1
	$\hat{K} = \hat{H}_1$ [ext. \angle of cyclic quadrilateral]	√ R
	=112°	✓ answer
	OR	OR (4)
	$\hat{H}_2 = \hat{F} = 68^{\circ}$ [ext. \angle of cyclic quadrilateral]	✓ S ✓ R
	$\hat{K} = 112^{\circ}$ [opp. \angle s of cyclic quadrilateral]	✓ S ✓ R
		(4)
5.2.1	$\hat{C} = x$ [\angle s in the same segment]	✓ S ✓ R
	$\hat{A}_1 = \hat{C} = x$ [alt. $\angle s$; BA CD]	✓ S/R
	$\hat{\mathbf{D}}_2 = \hat{\mathbf{A}}_1 = x$ [\(\angle \mathbf{s}\) in the same segment]	✓ S/R
	$\hat{\mathbf{D}}_4 = \hat{\mathbf{B}} = x$ [tan-chord theorem]	\checkmark S \checkmark R (6)
	OR	OR
	$\hat{D}_2 = x$ [alt. $\angle s$; BA CD]	✓ S/R
	$\hat{A}_1 = \hat{D}_2 = x$ [\(\angle \text{s in the same segment}\)]	\checkmark S \checkmark R
	$\hat{C} = \hat{B} = x$ [$\angle s$ in the same segment]	✓ S/R
	$\hat{\mathbf{D}}_4 = \hat{\mathbf{B}} = x$ [tan-chord theorem]	✓ S ✓ R
	4	(6)
5.2.2	$\hat{D}_3 = 90^{\circ}$ [\angle in a semicircle]	✓ S ✓ R
	$\hat{E} = 180^{\circ} - (\hat{B} + B\hat{D}E)$ [sum of $\angle s$ in Δ]	✓ S
	$=180^{\circ} - (x+90^{\circ} + x)$	
	$=90^{\circ}-2x$	✓ answer
		(4)
	OR	OR
	$\hat{D}_3 = 90^\circ$ [\angle in a semicircle]	✓ S ✓ R
	$\hat{E} + \hat{CDE} = 180^{\circ}$ [co-interior $\angle s$; BA CD]	∨ S ∨ R ✓ S
	$\hat{\mathbf{E}} = 180^{\circ} - \hat{\mathbf{CDE}}$	
	$=180^{\circ} - (x + 90^{\circ} + x)$	
	$=90^{\circ}-2x$	✓ answer
		(4)

5.2.3	$\hat{A}_2 = 180^{\circ} - (\hat{B} + \hat{D}_3 + \hat{A}_1)$ [sum of \angle s in $\triangle ABD$]	✓ S
	$=180^{\circ} - (x+90^{\circ} + x)$	
	$=90^{\circ}-2x$	$\hat{A}_2 = 90^\circ - 2x$
	$\therefore \hat{A}_2 = \hat{E} \qquad [both = 90^\circ - 2x]$	$\hat{A}_2 = \hat{E}$
	:. AE is a tangent to the circle through A, D and E [converse: tan-chord-theorem]	✓ R
	on.	(4)
	OR	OR
	$\hat{D}_1 = 180^\circ - (\hat{D}_2 + \hat{D}_3 + \hat{D}_4)$ [\(\angle \text{s on a straight line}\)]	√ S
	$=180^{\circ} - (x+90^{\circ} + x)$	
	$=90^{\circ}-2x$	
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{A}}_2$ [tan-chord-theorem]	
	$\therefore \hat{A}_2 = 90^\circ - x$	$\hat{\mathbf{A}}_2 = 90^\circ - 2x$
	$\therefore \hat{A}_2 = \hat{E} \qquad [both = 90^\circ - 2x]$	$\hat{A}_2 = \hat{E}$
	:. AE is a tangent to the circle through A, D and E [converse: tan-chord-theorem]	√ R
		(4)
		[20]

TOTAL MARKS:

75

downloaded from Stanmorephysics.com