

education

Department:

Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

downloaded from Stanmorephysics.com

MARKS: 100
TIME: 2 hours

This question paper consists of 9 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 9 questions.
2. Answers ALL questions.
3. Clearly show ALL calculations, diagrams, graphs, etc cetera that you have used in determining yours answers.
4. Answers only will not necessarily be awarded full marks.
5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

question downloaded from Stanmorephysics.com

Given the quadratic sequence: $2 ; 5 ; 10 ; 17 ; \ldots$
1.1 Write down the next two terms of the quadratic sequence.
1.2 Calculate the $n^{\text {th }}$ term of the quadratic sequence.

QUESTION 2

2.1 Given the combined constant and arithmetic sequences:
$5 ; 4$; 5 ; 7 ; 5 ; 10 ; ...
Determine the position of the term 1051 in the combined sequence.
2.2 The series $3+8+13+\ldots$ consists of n terms. The sum of the last three terms is 699 .
2.2.1 Determine the sum to n terms in terms of n.
2.2.2 If the last three terms are excluded from the series, then determine in terms of n the sum of the remaining terms.
2.2.3 Hence, or otherwise, determine the value of n.

QUESTION 3

3.1 The sixth term of a geometric sequence is 80 more than the fifth term.
3.1.1 Show that $a=\frac{80}{r^{5}-r^{4}}$.
3.1.2 If it is further given that sum of the fifth and sixth terms is 240 , determine the
value of the common ratio.
3.2 Write the geometric series $9+3+1 ; \ldots$ to 130 terms in sigma notation.

QUESTION 4

In the diagram below, $\mathrm{BC}=\mathrm{CE} ; \widehat{E}_{1}=x$ and $\widehat{D}_{1}=\widehat{D}_{2}$.

4.1 Name, with reasons, TWO other angles each equal to x and show that FD $=$ FE.
4.2 Prove that $B F$ bisects $C \hat{B} A$.
4.3 Hence, or otherwise, prove that $\hat{A}_{1}=C \hat{B} A$.

QUESTION 5

5.1 The angle at the point of contact between a tangent to a circle and a chord is \qquad
5.2 In the sketch below, circle centre O has a tangent KLM.

Diameter NQ produced meet the tangent in K.
$\hat{N}_{1}=32^{\circ}$ and $\hat{N}_{2}=23^{\circ}$.

Calculate, with reasons, the size of:

$$
\begin{equation*}
\text { 5.2.1 } \quad \hat{P}_{2} \tag{1}
\end{equation*}
$$

5.2.2 P $\hat{O} Q$
5.2.3 $\quad \hat{L}_{2}$
5.2.4 NL̂Q
5.2.5 $\quad \hat{L}_{3}$
5.2.6 P̂̂K

QUESTION 6

In the diagram below, $\triangle A B C$ has $D E \| B C$. Prove the theorem that states $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$.

QUESTION 7

In the diagram below, EFGK is a cyclic quadrilateral with $\hat{F}=90^{\circ}$.
EK and FG are produced to meet at $\mathrm{H} . \mathrm{HJ}$ is drawn parallel to FE . GK produced meets HJ at J.

7.1 Prove that:
7.1.1 $J \hat{H} F=90^{\circ}$
7.1.2 $\quad \hat{K}_{2}=90^{\circ}$
7.1.3 Δ HKG ||| Δ JHG
7.2 Calculate JG and KG if $\mathrm{HG}=5 \mathrm{~cm}$ and $\mathrm{JH}=10 \mathrm{~cm}$.

downloaded from Stanmorephysics.com

QUESTION 8 (ANSWER THIS QUESTION WITHOUT THE USE OF CALCULATOR)

8.1 Show

$$
\begin{equation*}
\frac{\sin \left(90^{\circ}+x\right) \cos x \tan (-x)}{\cos \left(180^{\circ}+x\right)}=\sin x \tag{4}
\end{equation*}
$$

8.2 If $\sin 36^{\circ}=m$, and $\cos 24^{\circ}=n$, determine the following in terms of m and /or n :

$$
\text { 8.2.1 } \cos 36^{\circ}
$$

8.2.2 $\sin 12^{\circ}$
8.3 Simplify:

$$
\begin{equation*}
\frac{2 \cos 285^{\circ} \cos 15^{\circ}}{\cos \left(45^{\circ}-x\right) \cos x-\sin \left(45^{\circ}-x\right) \sin x} \tag{5}
\end{equation*}
$$

8.4 Calculate the value of

$$
\begin{equation*}
(\sin 3 x-\cos 3 x)^{2} \text { if } \sin 6 x=-\frac{2}{5} \tag{4}
\end{equation*}
$$

QUESTION 9

Given $f(x)=\sin x+1$ and $g(x)=\cos 2 x$
9.1 Show that $f(x)=g(x)$ can be written as $(2 \sin x+1) \sin x=0$.
9.2 Hence or otherwise determine the general solution of $\sin x+1=\cos 2 x$.
9.3 Write down the range of $g(x)-1$.
9.4 Consider the following geometric series

$$
1+2 \cos 2 x+4 \cos ^{2} 2 x+\cdots
$$

Determine the values of x for the interval $0^{\circ} \leq x \leq 90^{\circ}$ for which the series will converge.

INFORMATION SHEET: MATHEMATICS

INLIGTINGSBLAD: WISKUNDE

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \quad A=P(1+i)^{n} \\
& T_{n}=a+(n-1) d \quad \mathrm{~S}_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; \quad r \neq 1 \quad S_{\infty}=\frac{a}{1-r} ;-1<r<1 \\
& F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\
& y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta
\end{aligned}
$$

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

$$
\text { In } \triangle A B C: \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \quad \text { area } \triangle A B C=\frac{1}{2} a b \cdot \sin C
$$

$$
\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta
$$

$$
\sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta
$$

$$
\cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta
$$

$$
\cos 2 \alpha=\left\{\begin{array}{l}
\cos ^{2} \alpha-\sin ^{2} \alpha \\
1-2 \sin ^{2} \alpha \\
2 \cos ^{2} \alpha-1
\end{array} \quad \sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha\right.
$$

$$
\bar{x}=\frac{\sum f x}{n}
$$

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

$\mathrm{P}(A)=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})
$$

$\hat{y}=a+b x$

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This marking guideline consists of 10 pages.

downloaded from Stanmorephysics.com

QUESTION 1

1.1	26; 37	AA $\checkmark \checkmark$ correct values	2
1.2	$\begin{aligned} & 2 a=2 \\ & a=1 \\ & 3 a+b=3 \\ & b=0 \\ & a+b+c=2 \\ & c=1 \\ & T_{n}=n^{2}+1 \end{aligned}$	A $\checkmark a$ value $C A \checkmark b$ value $\mathrm{CA} \checkmark c$ value $C A \checkmark$ general term OR	
	$\begin{aligned} & 2 a=2 \\ & a=1 \\ & 3 a+b=3 \\ & b=0 \\ & T_{0}=c=1 \\ & T_{n}=n^{2}+1 \end{aligned}$	A $\checkmark a$ value $C A \checkmark b$ value $\mathrm{A} \checkmark c$ value $\mathrm{CA} \checkmark$ general term	
	OR $\begin{aligned} T_{n} & =T_{1}+(n-1) d_{1}+\frac{(n-1)(n-2)}{2} d_{2} \\ & =2+(n-1)(3)+\frac{(n-1)(n-2)}{2}(2) \\ & =2+3 n-3+n^{2}-3 n+2 \\ & =n^{2}+1 \end{aligned}$	OR A \checkmark formula A \checkmark substituting first and second difference values CA \checkmark simplifying $\mathrm{CA} \checkmark$ general term	4
	OR $\begin{aligned} T_{n} & =\frac{n-1}{2}[2 a+(n-2) d]+T_{1} \\ & =\frac{n-1}{2}[2(3)+(n-2)(2)]+2 \\ & =(n-1)[3+n-2]+2 \\ & =(n-1)(n+1)+2 \\ & =n^{2}-1+2=n^{2}+1 \end{aligned}$	OR A \checkmark formula A \checkmark correct substitution into formula CA \checkmark simplifying CA \checkmark general term	4
			4
			[6]

QUESTION 2

2.1	$\begin{aligned} & 3 n+1=1051 \\ & 3 n=1050 \\ & n=350 \end{aligned}$ 1051 is in the $700^{\text {th }}$ position	A \checkmark equating nth term to 1051 $C A \checkmark$ value of n CA \checkmark conclusion	3
2.2.1	$\begin{aligned} a & =3, d=5 \\ S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\ & =\frac{n}{2}[2(3)+(n-1)(5)] \\ & =\frac{n}{2}[5 n+1] \end{aligned}$	$\mathrm{A} \checkmark d=5$ CA \checkmark substitution of $a \& d$ into sum formula	2
2.2.2	$\begin{aligned} S_{n-3} & =\frac{n-3}{2}[5(n-3)+1] \\ & =\frac{n-3}{2}[5 n-14] \end{aligned}$	$\text { A } \checkmark n-3$ CA \checkmark substituting into sum formula	2
2.2.3	$\begin{aligned} & S_{n}-S_{n-3}=699 \\ & \frac{n}{2}[5 n+1]-\frac{n-3}{2}[5 n-14]=699 \\ & n(5 n+1)-(n-3)(5 n-14)=1398 \\ & 5 n^{2}+n-5 n^{2}+29 n-42=1398 \\ & 30 n=1440 \\ & n=48 \end{aligned}$ OR $\begin{aligned} & \mathrm{T}_{\mathrm{n}}=5 \mathrm{n}-2 \\ & \mathrm{~T}_{\mathrm{n}-1}=5(\mathrm{n}-1)-2 \\ & \mathrm{~T}_{\mathrm{n}-2}=5(\mathrm{n}-2)-2 \\ & 15 \mathrm{n}-21=699 \\ & \mathrm{n}=45 \end{aligned}$	$C A \checkmark$ forming equation CA \checkmark simplification CA \checkmark answer (n must be a natural number) OR CA \checkmark forming equations CA \checkmark simplification CA \checkmark answer (n must be a natural number)	3
			[10]

QUESTION 3

\begin{tabular}{|c|c|c|c|}
\hline 3.1.1 \& \[
\begin{aligned}
\& T_{6}=80+T_{5} \\
\& a r^{5}=80+a r^{4} \\
\& a r^{5}-a r^{4}=80 \\
\& a\left(r^{5}-r^{4}\right)=80 \\
\& a=\frac{80}{r^{5}-r^{4}}
\end{aligned}
\] \& \begin{tabular}{l}
\(\mathrm{A} \checkmark\) forming equation \\
A \(\checkmark\) factorizing
\end{tabular} \& 2 \\
\hline 3.1.2 \& \begin{tabular}{l}
\[
\begin{aligned}
\& T_{5}+T_{6}=240 \\
\& a r^{4}+a r^{5}=240 \\
\& a\left(r^{4}+r^{5}\right)=240 \\
\& a=\frac{240}{r^{4}+r^{5}} \\
\& \frac{80}{r^{5}-r^{4}}=\frac{240}{r^{5}+r^{4}} \\
\& 80 r^{5}+80 r^{4}=240 r^{5}-240 r^{4} \\
\& 320 r^{4}=160 r^{5} \\
\& r=2
\end{aligned}
\] \\
OR \\
Let the fifth term be \(=x\) and sixth term \(=y\), then
\[
\begin{aligned}
\& x+y=240 \rightarrow(1) \\
\& -x+y=80 \rightarrow(2) \\
\& (1)+(2) \\
\& 2 y=320 \\
\& y=160 ; x=80 \\
\& r=\frac{160}{80}=2
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
A \(\checkmark\) forming equation \\
CA \(\checkmark\) factorizing \\
\(C A \checkmark\) equating \\
CA \(\checkmark\) simplifying \\
CA \(\checkmark r-\) value \\
OR \\
A \(\checkmark\) forming equation (1) \\
\(\mathrm{A} \checkmark\) forming equation (2) \\
CA \(\checkmark y\)-value \\
CA \(\checkmark x\)-value \\
CA \(\checkmark r\)-value
\end{tabular} \& 5

5

\hline 3.2 \& $$
\sum_{k=1}^{130} 9\left(\frac{1}{3}\right)^{k-1}
$$ \& $\mathrm{A} \checkmark$ upper and lower limit values A $\checkmark k^{\text {th }}$ term \& 2

\hline \& \& \& [9]

\hline
\end{tabular}

QUESTION 4

4.1	$\begin{aligned} & \begin{array}{l} \widehat{B}_{2}=\widehat{E}_{1}=x \ldots \ldots .(\mathrm{BC}=\mathrm{CE}) \\ \widehat{D}_{1}=\widehat{B}_{2}=x \ldots(\text { Ext. } \angle \text { of cyclic quad }=\text { interior } \\ \\ \\ \text { opposite angles }) \\ \therefore \widehat{D}_{1}=\widehat{E}_{1} \\ \therefore \mathrm{FD}=\mathrm{FE} \end{array} \end{aligned}$	$\begin{aligned} & A \checkmark S / R \\ & A \checkmark S \quad A \checkmark R \\ & A \checkmark S \end{aligned}$	(4)
4.2	$\begin{aligned} & \widehat{D}_{2}=\widehat{D}_{1}=x \ldots \ldots \text { given } \\ & \widehat{D}_{2}=\widehat{B}_{1}=x \ldots \text { subtended by arc AF } \\ & \therefore \widehat{B}_{1}=\widehat{B}_{2} \\ & \therefore \text { EB bisects } C \widehat{B} A \end{aligned}$	$\begin{aligned} & A \checkmark S \\ & A \checkmark S A \checkmark R \\ & A \checkmark S \end{aligned}$	(4)
4.3	$\begin{aligned} & \hat{A}_{1}=\hat{F}_{2} \ldots \ldots . \text { subtended by arc } \\ & \hat{F}_{2}=2 x \ldots . . \text { ext. } \angle \text { of } \Delta \mathrm{DFE} \\ & \therefore \hat{A}_{1}=2 x=C \hat{B} A \end{aligned}$	$\begin{aligned} & \mathrm{A} \checkmark \mathrm{~S} \quad \mathrm{~A} \checkmark \mathrm{R} \\ & \mathrm{~A} \checkmark \mathrm{~S} \quad \mathrm{~A} \checkmark \mathrm{R} \end{aligned}$	(4)
			[12]

downloaded from Stanmorephysics.com

QUESTION 5

5.1 equal to the angle subtended by the chord in the opposite circle segment.	A \checkmark S	(1)
5.2.1	$\hat{P}_{2}=23^{\circ} \ldots \ldots .(\mathrm{ON}=\mathrm{OP} ;$ radii $)$	A \checkmark S/R	(1)
5.2.2	$P \widehat{O} Q=2 \widehat{N}_{2}=46^{\circ} \ldots \ldots .(\angle \text { at centre }) /$ (Ext $\angle \mathrm{of} \Delta$)	$\mathrm{A} \checkmark \mathrm{S} A \checkmark \mathrm{R}$	(2)
5.2.3	$\hat{L}_{2}=\widehat{N}_{2}=23^{\circ} \ldots \ldots$ (subt. by arc PQ)	$\mathrm{A} \checkmark \mathrm{S} \mathrm{A} \sqrt{ }$	(2)
5.2.4	$N \hat{L} Q=90^{\circ} \ldots \ldots$ (subt. by diameter NQ)	$\mathrm{A} \checkmark \mathrm{S} / \mathrm{R}$	(1)
5.2.5	$\begin{aligned} & \hat{L}_{3}=90^{\circ}-23^{\circ} \\ & \quad=67^{\circ} \\ & \text { OR } \\ & P \hat{O} N=134^{\circ} \quad \ldots \ldots(\text { angles of triangle }) \\ & P \hat{O} N=2 \hat{L} \quad \ldots . . \text { (angle at centre theorem) } \\ & \\ & =67^{\circ} \end{aligned}$	CA \checkmark S CA \checkmark answer OR $C A \checkmark S$ CA \checkmark answer	(2) (2)
5.2.6	$\begin{aligned} P \hat{L} K & =L \widehat{N} P \ldots \ldots(\text { tan-chord theorem }) \\ & =32^{\circ}+23^{\circ} \\ & =55^{\circ} \end{aligned}$	$\mathrm{A} \checkmark \mathrm{~S} / \mathrm{R}$ A \checkmark answer	(2)
			[11]

QUESTION 6

Construction: Draw line $h_{1} \perp \mathrm{AC}$ and $h_{2} \perp \mathrm{AB}$	A \checkmark construction		
Proof:			
$\text { Area of } \triangle A D E=\frac{1}{2} \cdot A D \cdot h_{2}$	A \checkmark S		
	$A \checkmark R$		
and $\quad \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle C E D}=\frac{\frac{1}{2} \cdot A E \cdot h_{1}}{\frac{1}{2} \cdot E C . h_{1}} \quad$ same height h_{1}	A \checkmark S/R		
but area of $\triangle B D E=$ area of $\triangle C E D$ $\because($ same base $D E$; the same height; $D E \\| B C$)	AA \checkmark S $/ \checkmark \mathrm{R}$		
$\therefore \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle B D E}=\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle C E D}$	A \checkmark S		
$\therefore \frac{A D}{D B}=\frac{A E}{E C}$			
		[7]	

downloaded from Stanmorephysics.com

QUESTION 7

QUESTION 8

| 8.1 | $\frac{(\cos x)(\cos x)(-\tan x)}{-\cos x}$$(\cos x)(\cos x)\left(\frac{\sin x}{\cos x}\right)$
 $=\sin x$
 8.2
 8.2 .1 | $\mathrm{A} \checkmark-\tan x$
 $\mathrm{~A} \checkmark \cos x$
 $\mathrm{~A} \checkmark \frac{\sin x}{\cos x}$
 $\mathrm{~A} \checkmark \cos x$ |
| :--- | :--- | :--- | :--- |

QUESTION 9

9.1	$\begin{aligned} & \sin x+1=1-2 \sin ^{2} x \\ & 2 \sin ^{2} x+\sin x=0 \\ & \sin x(2 \sin x+1)=0 \end{aligned}$		A \checkmark equating A \checkmark standard form	(2)
9.2	$\begin{aligned} & \sin x(2 \sin x+1)=0 \\ & \sin x=0 \quad \text { or } \\ & x=0^{\circ}+k .360^{\circ} ; k \in \mathbb{Z} \\ & x=180^{\circ}+k .360^{\circ} ; k \in \mathbb{Z} \end{aligned}$	$\begin{aligned} & 2 \sin x=-1 \\ & \sin x=-\frac{1}{2} \\ & x=210^{\circ}+k .360^{\circ} ; k \in \mathbb{Z} \\ & x=330^{\circ}+k .360^{\circ} ; k \in \mathbb{Z} \end{aligned}$	$\begin{aligned} & \mathrm{A} \checkmark \sin x=0 \\ & \mathrm{~A} \checkmark \sin x=-\frac{1}{2} \\ & \mathrm{~A} \checkmark 0^{\circ}+k .360^{\circ} \\ & \mathrm{A} \checkmark k \in \mathbb{Z} \\ & \mathrm{CA} \checkmark 210^{\circ}+ \\ & k .360^{\circ} \\ & \mathrm{CA} \checkmark 330^{\circ}+ \\ & k .360^{\circ} \end{aligned}$	(6)
9.3	$-2 \leq y \leq 0$		A \checkmark answer	(1)
9.4	$\begin{aligned} & r=2 \cos 2 x \\ & -1<2 \cos 2 x<1 \\ & \frac{-1}{2}<\cos 2 x<\frac{1}{2} ; \text { If } \cos 2 x=\frac{1}{2} \\ & \therefore 2 x=60^{\circ} \\ & \text { then } x=30^{\circ} \\ & \therefore 30^{\circ}<x<90^{\circ} \end{aligned}$		$\begin{aligned} & \mathrm{A} \checkmark r=2 \cos 2 x \\ & \text { A } \checkmark-1<r<1 \\ & \text { CA } \checkmark \\ & \frac{-1}{2}<\cos 2 x<\frac{1}{2} \\ & \text { CA } \checkmark x=30^{\circ} \\ & \text { CA } \checkmark \text { answer } \\ & 30^{\circ}<x<90^{\circ} \\ & \hline \end{aligned}$	(5)
				[14]

TOTAL MARKS:

downloaded from Stanmorephysics.com

