Downloaded from Stanmorephysics.com education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

COMMON TEST

MARCH 2020

MARKS: 75

TIME: 1½ hours

This question paper consists of 5 pages and 2 Diagram Sheets.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. TWO DIAGRAM SHEETS for QUESTION 4.1, QUESTION 4.2, QUESTION 5.1 and QUESTION 5.2 are attached at the end of this question paper. Detach the DIAGRAM SHEETS and hand in together with your ANSWER BOOK.
- 10. Write neatly and legibly.

Downloaded from Stanmorephysics.com

1.1 Solve for x:

1.1.1
$$2x\left(x-\frac{1}{2}\right)=0$$
 (2)

1.1.2
$$4x^2 + 11x = 2$$
 (answer correct to TWO decimal places) (4)

$$1.1.3 \quad x - \sqrt{8 - 2x} = 0 \tag{5}$$

$$1.1.4 \quad x(x-7) + 12 < 0 \tag{4}$$

1.2 Solve simultaneously for x and y:

$$x = 3y - 5$$
 and $(2x - y - 2)(x + y) = 0$ (4) [19]

QUESTION 2

2.1 Simplify WITHOUT the use of a calculator:
$$\sqrt{18} + 2\sqrt{2} + \frac{1}{\sqrt{2}}$$

Write your answer with a rational denominator. (3)

2.2 Solve for x without the use of a calculator:

$$2.2.1 \quad \sqrt[4]{16} = 128 \tag{4}$$

$$2.2.2 \quad \frac{3^{2x+1} - 3^{2x-1}}{3^x} = 24 \tag{4}$$

QUESTION 3

3.1 If $\cos \theta = -\frac{2}{5}$ and $\theta \in [180^{\circ}; 360^{\circ}]$, determine the value of $\tan \theta$ by using a diagram, and without the use of a calculator. (3)

3.2 Evaluate, without using of a calculator:
$$\frac{\cos 115^{\circ}.\cos 214^{\circ}}{\cos 65^{\circ}.\sin 236^{\circ}}$$
 (5)

3.3 Simplify to a single term, without the use of a calculator:

$$\cos(90^{\circ} + x).\tan(540^{\circ} + x).\cos(180^{\circ} - x) + \sin(-90^{\circ})$$
[15]

GIVE REASONS FOR YOUR STATEMENTS AND CALCULATIONS IN QUESTIONS 4 AND 5.

QUESTION 4

4.1 In the diagram, AB is a chord of the circle having centre O. C is a point on AB such that $\hat{ACO} = 90^{\circ}$. OC = 5 cm and AO = 10 cm.

Calculate, with reasons, the length of AB.

(4)

4.2 In the diagram, O is the centre of the larger circle, which passes through P, R and S.

R is a point on chord PV of the smaller circle PVSO. SV is produced to T. RVT = 96°.

4.2.1 Calculate, with reasons, the size of \hat{R}_2 .

(7)

4.2.2 Prove that $\triangle RVS$ is isosceles.

(3)

[14]

Downloaded from Stanmorephysics.com ouestion 5

In the figure below, JLH is a tangent to the circle having centre O at L. K and M are points on the circle.

Prove the theorem which states that $M\hat{L}H = \hat{K}$.

(5)

5.2 AE is a diameter of the circle in the diagram below. AE is produced to D. DB is a tangent to the circle at B. DC is perpendicular to AD. CBA is a straight line. BE and EC are drawn. Let $\hat{A} = x$.

5.2.1 Prove that BCDE is a cyclic quadrilateral.

(3)

5.2.2 Prove that
$$\hat{C}_1 = x$$
. (4)

5.2.3 Prove that
$$\hat{E}_1 = \hat{E}_3$$
. (2)

5.2.4 Is CE a tangent to the circle through A, B and E? Give a reason for your answer. (2)

[16]

TOTAL: 75

NAME & SURNAME:

DIAGRAM SHEET 1

QUESTION 4.1

QUESTION 4.2

NAME & SURNAME:

DIAGRAM SHEET 2

QUESTION 5.1

QUESTION 5.2

Department: Education

PROVINCE OF KWAZULU-NATAL
Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

MARKING GUIDELINE

COMMON TEST

MARCH 2020

MARKS: 75

This marking guideline consists of 7 pages.

	GEOMETRY • <i>MEETKUNDE</i>		
S	A mark for a correct statement (A statement mark is independent of a reason)		
8	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)		
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)		
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)		
S/R	Award a mark if statement AND reason are both correct		
5/ K	Ken 'n punt toe as die bewering EN rede beide korrek is		

QUESTION 1 Downloaded from Stanmorephysics.com

$1.1.1 \qquad 2x\left(x-\frac{1}{2}\right)=0$	
$x = 0$ or $x = \frac{1}{2}$	$x = 0 \checkmark x = \frac{1}{2}$
	(2)
$\begin{vmatrix} 1.1.2 & 4x^2 + 11x = 2 \\ 4x^2 + 11x - 2 = 0 \end{vmatrix}$	✓ standard form
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
$x = \frac{-11 \pm \sqrt{(11)^2 - 4(4)(-2)}}{2(4)}$	✓ substitution into the correct formula
$ \begin{array}{ccc} 2(4) \\ x = 0.17 & \text{or} & x = -2.92 \end{array} $	\checkmark x-value \checkmark x-value
	(4)
1.1.3 $x - \sqrt{8 - 2x} = 0$ $x = \sqrt{8 - 2x}$	\checkmark isolate $\sqrt{8-2x}$
$x^{2} = 8 - 2x$ $x^{2} + 2x - 8 = 0$	✓ squaring both sides
(x+4)(x-2) = 0	✓ factors
$x \neq -4$ or $x = 2$ $\therefore x = 2$ only	✓ rejecting $x = -4$ ✓ correct solution
	(5)
$\begin{vmatrix} 1.1.4 & x(x-7)+12 < 0 \\ x^2 - 7x + 12 < 0 \end{vmatrix}$	✓standard form
(x-3)(x-4) = 0 +	✓ method
$3 < x < 4 \mathbf{OR} x \in (3; 4)$	✓✓ correct solution (4)
1.2 $x = 3y - 5$ (1)	(+)
$(2x - y - 2)(x + y) = 0 \dots (2)$	
Substitute (1) into (2): (2(3y-5)-y-2)(3y-5+y) = 0	✓ correct substitution
(6y-10-y-2)(4y-5) = 0 (5y-12)(4y-5) = 0	✓ factors
$y = \frac{12}{5}$ or $y = \frac{5}{4}$	\checkmark values of y
$x = \frac{11}{5}$ or $x = -\frac{5}{4}$	\checkmark values of x
	(4) [19]

2.1 $\sqrt{18} + 2\sqrt{2} + \frac{1}{\sqrt{2}}$ $= 3\sqrt{2} + 2\sqrt{2} + \frac{1}{\sqrt{2}}$ $= 5\sqrt{2} + \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $= \frac{5\sqrt{2} + \frac{\sqrt{2}}{2}}{2}$ $= \frac{11\sqrt{2}}{2}$ \checkmark answer \checkmark answer \checkmark 2.2.1 $\sqrt[3]{16} = 128$ $\sqrt{2^{\frac{1}{x}}} = 2^{7}$ $\sqrt{2^{\frac{1}{x}}} = 2^{\frac{1}{x}}$ $\sqrt{2^{\frac{1}{x}}} = 2^{\frac$	2.1	1	
$= 5\sqrt{2} + \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $= 5\sqrt{2} + \frac{\sqrt{2}}{2}$ $= \frac{11\sqrt{2}}{2}$ $= \frac{11\sqrt{2}}{2}$ $2.2.1 \sqrt[3]{16} = 128$ $2^{\frac{1}{2}} = 2^{7}$ $\frac{4}{x} = 7$ $x = \frac{4}{7}$ $2.2.2 \frac{3^{2x+1} - 3^{2x-1}}{3^{x}} = 24$ $\frac{3^{2x}(3^{1} - 3^{-1})}{3^{x}} = 24$ $3^{x}(2^{\frac{2}{3}}) = 24$ $3^{x} = 9$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $\sqrt{2}$ $\sqrt{2^{x}} \times 2^{7}$ $\sqrt{2^{x}} \times 2^{7}}$ $\sqrt{2^{x}} \times 2^{7}$ $\sqrt{2^{x}} \times 2^{7$	2.1	$\sqrt{18} + 2\sqrt{2} + \frac{1}{\sqrt{2}}$	
$= 5\sqrt{2} + \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $= 5\sqrt{2} + \frac{\sqrt{2}}{2}$ $= \frac{11\sqrt{2}}{2}$ $= \frac{11\sqrt{2}}{2}$ $2.2.1 \sqrt[3]{16} = 128$ $2^{\frac{1}{2}} = 2^{7}$ $\frac{4}{x} = 7$ $x = \frac{4}{7}$ $2.2.2 \frac{3^{2x+1} - 3^{2x-1}}{3^{x}} = 24$ $\frac{3^{2x}(3^{1} - 3^{-1})}{3^{x}} = 24$ $3^{x}(2^{\frac{2}{3}}) = 24$ $3^{x} = 9$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $\sqrt{2}$ $\sqrt{2^{x}} \times 2^{7}$ $\sqrt{2^{x}} \times 2^{7}}$ $\sqrt{2^{x}} \times 2^{7}$ $\sqrt{2^{x}} \times 2^{7$		$= 3\sqrt{2} + 2\sqrt{2} + \frac{1}{\sqrt{2}}$	\checkmark for $3\sqrt{2}$
$= \frac{11\sqrt{2}}{2}$ $= \frac{11\sqrt{2}}{2}$ $2.2.1 \sqrt[3]{16} = 128$ $2^{\frac{4}{x}} = 2^{7}$ $\frac{4}{x} = 7$ $x = \frac{4}{7}$ $2.2.2 \frac{3^{2x+1} - 3^{2x-1}}{3^{x}} = 24$ $\frac{3^{2x}(3^{1} - 3^{-1})}{3^{x}} = 24$ $3^{x}(2^{\frac{2}{3}}) = 24$ $3^{x}(2^{\frac{2}{3}}) = 24$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $\sqrt{3}$		$=5\sqrt{2}+\frac{1}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$	✓ rationalizing denominator
2.2.1 $\sqrt[3]{16} = 128$ $2^{\frac{1}{x}} = 2^{7}$ $\frac{4}{x} = 7$ $x = \frac{4}{7}$ 2.2.2 $\frac{3^{2x+1} - 3^{2x-1}}{3^{x}} = 24$ $\frac{3^{2x}(3^{1} - 3^{-1})}{3^{x}} = 24$ $3^{x}\left(2^{\frac{2}{3}}\right) = 24$ $3^{x} = 9$ $3^{x} = 3^{2}$ x = 2 (4)		_	
$2^{\frac{4}{x}} = 2^{7}$ $\frac{4}{x} = 7$ $x = \frac{4}{7}$ $2.2.2 \frac{3^{2x+1} - 3^{2x-1}}{3^{x}} = 24$ $\frac{3^{2x}(3^{1} - 3^{-1})}{3^{x}} = 24$ $3^{x}(2^{\frac{2}{3}}) = 24$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $\sqrt{2^{\frac{4}{x}}} \checkmark 2^{7}$ $\sqrt{2^{\frac{4}{x}}} ? 3^{7}$		$=\frac{11\sqrt{2}}{2}$	
$\frac{4}{x} = 7$ $x = \frac{4}{7}$ $2.2.2 \qquad \frac{3^{2x+1} - 3^{2x-1}}{3^x} = 24$ $\frac{3^{2x}(3^1 - 3^{-1})}{3^x} = 24$ $3^x \left(2\frac{2}{3}\right) = 24$ $3^x = 9$ $3^x = 3^2$ $x = 2$ $3^x = 3^2$ $x = 2$ 4 $3^x = 9$ $3^x = 3^2$ $x = 3^2$	2.2.1		4
$\frac{4}{x} = 7$ $x = \frac{4}{7}$ $2.2.2 \qquad \frac{3^{2x+1} - 3^{2x-1}}{3^x} = 24$ $\frac{3^{2x}(3^1 - 3^{-1})}{3^x} = 24$ $3^x \left(2\frac{2}{3}\right) = 24$ $3^x = 9$ $3^x = 3^2$ $x = 2$ $3^x = 3^2$		$2^{\frac{4}{x}} = 2^7$	$\sqrt{2^x} \sqrt{2^7}$
$x = \frac{4}{7}$ 2.2.2 $\frac{3^{2x+1} - 3^{2x-1}}{3^x} = 24$ $\frac{3^{2x}(3^1 - 3^{-1})}{3^x} = 24$ $3^x \left(2\frac{2}{3}\right) = 24$ $3^x = 9$ $3^x = 3^2$ $x = 2$ ✓ simplification ✓ like bases ✓ answer (4)		$\frac{4}{-}=7$	Laquating avnonants
2.2.2 $\frac{3^{2x+1} - 3^{2x-1}}{3^x} = 24$ $\frac{3^{2x}(3^1 - 3^{-1})}{3^x} = 24$ $3^x \left(2\frac{2}{3}\right) = 24$ $3^x = 9$ $3^x = 3^2$ $x = 2$ $x = 2$ (4) (4)			equating exponents
$\frac{3^{2x}(3^{1}-3^{-1})}{3^{x}} = 24$ $3^{x}\left(2\frac{2}{3}\right) = 24$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $3^{x} = 3^{2}$ $3^{x} = 3$		$x = \frac{4}{7}$	
$\frac{3^{2x}(3^{1}-3^{-1})}{3^{x}} = 24$ $3^{x}\left(2\frac{2}{3}\right) = 24$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $3^{x} = 3^{2}$ $3^{x} = 3$	222	2 ² x+1 2 ² x-1	
$3^{x} \left(2\frac{2}{3}\right) = 24$ $3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $\sqrt{\text{like bases}}$ $\sqrt{\text{answer}}$ (4)	2.2.2	$\frac{3 - 3}{3^x} = 24$	
$3^{x} = 9$ $3^{x} = 3^{2}$ $x = 2$ $\sqrt{\text{like bases}}$ $\sqrt{\text{answer}}$ (4)		$\frac{3^{2x}(3^1-3^{-1})}{3^x}=24$	✓ factorising
$3^{x} = 3^{2}$ $x = 2$ $\sqrt{\text{like bases}}$ $\sqrt{\text{answer}}$ (4)		$3^x \left(2\frac{2}{3}\right) = 24$	✓ simplification
$x = 2$ \checkmark answer (4)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
[11]		x=2	
			[11]

QUESTION 3 Downloaded from Stanmorephysics.com

4.1	$AC^2 = AO^2 - OC^2$	[Pythagoras]	✓ S/ R	
	$=10^2-5^2$			
	= 75			
	$AC = \sqrt{75} = 8,66 \text{ cm}$		✓ value of AC	
		[1] f	√R	
	$AB = 2 \times AC$	[line from centre \perp to chord]	✓ answer	
	=17,32 cm			4)
4.2	$\hat{TVR} = \hat{O}_1$	[ext. ∠ of cyclic quad.]	✓ S ✓ R	
	= 96°			
	$\hat{\mathbf{O}}_2 = 360^{\circ} - \hat{\mathbf{O}}_1$	[∠s around a point]		
	$=360^{\circ}-96^{\circ}$		✓ size of Ô ₂	
	= 264°		✓ size of \hat{O}_2 ✓ S ✓ R	
	$\hat{\mathbf{R}}_1 = \frac{1}{2}\hat{\mathbf{O}}_2$	$[\angle$ at centre = $2 \times \angle$ at circumf.]		
	$=\frac{1}{2}\left(264^{\circ}\right)$		\checkmark size of \hat{R}_1	
	=132°		✓ answer	
	$\hat{R}_2 = 180^\circ - \hat{R}_1$	[∠s on a straight line]		
	$=180^{\circ} - 132^{\circ}$			
	= 48°		((7)
4.3	$\hat{\mathbf{S}}_1 = \mathbf{R}\hat{\mathbf{V}}\mathbf{T} - \hat{\mathbf{R}}_2$	[ext. ∠ of ΔRVS]	✓ S / R	
	$=96^{\circ}-48^{\circ}$			
	= 48°			
	$\therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{R}}_2$	[both = 48°]	✓ S	
	\therefore VS = VR	[sides opp. to = \angle s]	✓ S / R	
	And ΔRVS is isosceles		(1	3)
			[1	4]

Downloaded from Stanmorephysics.com

	[converse of tan-chord-theorem does not apply]		(2)
	∴ $\hat{E}_2 \neq \hat{A}$ ∴ CE is not a tangent to the circle through A, B and E.	$\therefore \hat{\mathbf{E}}_2 \neq \hat{\mathbf{A}}$	
	=2x	$\hat{\mathbf{E}}_2 = 2x$	
	$=180^{\circ} - (90^{\circ} - x + 90^{\circ} - x)$		
5.2.4	$\hat{E}_2 = 180^\circ - (\hat{E}_1 + \hat{E}_3)$ [\angle s on a straight line]		
	$\therefore \hat{\mathbf{E}}_1 = \hat{\mathbf{E}}_3$		(2)
	$=90^{\circ}-x$	$\hat{E}_3 = 90^{\circ} - x$	
	$= 180^{\circ} - (x + 90^{\circ}) $ [sum of \angle s of \triangle CDE]		
	$\hat{\mathbf{E}}_3 = 180^{\circ} - (\hat{\mathbf{C}}_1 + \hat{\mathbf{CDE}})$		
	$=90^{\circ}-x$	$\hat{E}_1 = 90^{\circ} - x$	
	$=180^{\circ} - (x + 90^{\circ})$		
5.2.3	$\hat{E}_1 = 180^\circ - (\hat{A} + \hat{B}_3)$ [sum of \angle s of $\triangle ABE$]		

TOTAL: 75

Downloaded from Stanmorephysics.com