

education
 MPUMALANGA PROVINCE REPUBLIC OF SOUTH AFRICA

GRADE 12

MATHEMATICS

Date: 13 April 2021

Time: 2 hours
Marks: 100

Instructions:

Read the following instructions carefully before answering the questions.

- This question paper consists of 7 questions in Section A and one question in

Section B

- Answer ALL the questions in SECTION A and SECTION B is optional.
- Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- Answers only will not necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and nongraphical), unless stated otherwise.
- If necessary, round off answers to TWO decimal places, unless stated otherwise.

- Diagrams are NOT necessarily drawn to scale.
- An information sheet, with formulae, is included at the end of the question paper.
- THE diagram sheet that is included at the end of the paper must be handed in with your test, with construction lines added to the diagrams where necessary.
- Number the answers correctly according to the numbering system used in this question paper.
- Write legibly and present your work neatly.

SECTIONA ded from Stanmorpe Pof 12 sics.com

QUESTION 1

Given the sequence $-5 ; 4 ; 21 ; 46 ; \ldots .$.

1.1 Determine the general term of the above sequence.

1.2 Determine T_{15}

1.3 Which term in the sequence will be equal to 364 ?

QUESTION 2

$2.1 \quad \sum_{i=2}^{m} 32(2)^{5-i}<500$
2.1.1 Determine the value of m for which the above-mentioned statement is true, by using the correct sum formula.
2.1.2 Determine the value for $S_{\infty}-S_{4}$
[7]

QUESTION 3

$2 x ; x+1 ; 6-x ; \ldots$ are the first three (3) terms of an arithmetic sequence.
3.1 Determine the value for x.
3.2 If $x=4$, how many terms in the sequence add up to -575 .

QUESTION 4

The sum of the first n terms of a series is given by : $\mathrm{S}_{n}=\frac{n}{8}(14-4 n)$
4.1 Determine the sum of the first 25 terms of this series.
4.2 Determine the value of term 25.
4.3 Determine the general term of the series

Question 5de d from Stanm Page 4 of 12 priys ic s.com
5.1 If $\cos 26^{\circ}=q$, write the following in terms of p :
5.1.1 $\cos 334^{\circ}$
5.1.2 $\sin 52^{\circ}$
5.1.3 $\sin 86^{\circ}$
[6]

Question 6

6.1 Given in the diagram below $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ with

$$
\hat{\mathrm{A}}=\hat{\mathrm{P}}, \hat{\mathrm{~B}}=\hat{\mathrm{Q}} \text { and } \hat{\mathrm{C}}=\hat{\mathrm{R}} .
$$

Prove the theorem that states that if $\Delta \mathrm{ABC} \| \mid \Delta \mathrm{PQR}$ then $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$. (6)
6.2 wheiven in the diagram below, VR is the diameter of the circle with centre 0.
S is a point on the circumference. P is the midpoint of RS. The circle with RS as diameter intersects VR at T. ST, OP and SV are drawn.

6.2.1 Give a reason why $\mathrm{OP} \perp \mathrm{RS}$.
6.2.2 Prove that $\Delta R O P \|| | \Delta R V S$.
6.2.3 Prove that $\Delta \mathrm{RVS}||\mid \Delta \mathrm{RST}$.
(3)
6.2.4 Prove that $\mathrm{ST}^{2}=\mathrm{VT}$. TR
7.1 In the diagram below, O is the centre of the circle and P is a point on the circumference of the circle. Arc AB subtends AÔB at the centre of the circle and APB at the circumference of the circle.

Use the diagram to prove the theorem that states that $\mathrm{AOB}=2 \mathrm{~A} \hat{\mathrm{P}} \mathrm{B}$

 points on the circle. $\mathrm{PQ}=\mathrm{QS}$ and $\mathrm{QRS}=y$. The tangent PT at P meets $S Q$ produced at T. OQ intercepts $P S$ at A.

7.2.1 Give a reason why $\hat{\mathrm{P}}_{2}=y$.
7.2.2 Prove that PQ bisects TP̂S.
7.2.3 Determine PÔQ in terms of y.
7.2.4 Prove that PT is a tangent to the circle that passes through P, O and A.
7.2.5 Prove that $\mathrm{OA} P=90^{\circ}$.

SECTION B: OPTIONAL

QUESTION 8

8.1 Calculate the following without using calculator:

$$
\begin{align*}
& 81.1 \sin 236^{\circ} \cdot \cos 169^{\circ}+\sin 371 \cdot \cos \left(-124^{\circ}\right) \tag{4}\\
& 8.1 .2 \tag{6}
\end{align*} \frac{-\cos 10^{\circ}+\sin ^{2} 190^{\circ}}{\cos \left(-145^{\circ}\right) \cdot \cos 235^{\circ}}
$$

8.2 Prove the following identities:

$$
\begin{align*}
& \text { 8.2.1 } \frac{\cos 2 \mathrm{~A}+\sin \mathrm{A}}{\cos ^{2} \mathrm{~A}}=\frac{2 \sin \mathrm{~A}+1}{1+\sin \mathrm{A}} \tag{5}\\
& \text { 8.2.2 } \frac{\sin \left(x+45^{\circ}\right)}{\cos \left(x-45^{\circ}\right)}=\frac{\sin 2 x+1}{(\sin x+\cos x)^{2}} \tag{6}
\end{align*}
$$

8.3 Determine the general solution for:

$$
\begin{equation*}
\text { 8.3.3 } 2 \sin \left(3 x-15^{\circ}\right)+1=0 \tag{4}
\end{equation*}
$$

8.3.4 Hence determine all possible values for x, If $x \in\left[-270^{\circ} ; 90^{\circ}\right]$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \quad A=P(1+i)^{n}$
$T_{n}=a+(n-1) d \quad \mathrm{~S}_{n}=\frac{n}{2}(2 a+(n-1) d)$
$T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; r \neq 1 \quad S_{\infty}=\frac{a}{1-r} ;-1<r<1$
$F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
$y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta$
$(x-a)^{2}+(y-b)^{2}=r^{2}$
In $\triangle A B C: \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \quad$ area $\triangle A B C=\frac{1}{2} a b \cdot \sin C$
$\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta \quad \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta$
$\cos 2 \alpha=\left\{\begin{array}{l}\cos ^{2} \alpha-\sin ^{2} \alpha \\ 1-2 \sin ^{2} \alpha \\ 2 \cos ^{2} \alpha-1\end{array}\right.$
$\sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha$
$\bar{x}=\frac{\sum f x}{n}$
$\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$
$P(A)=\frac{n(A)}{n(S)}$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$\hat{y}=a+b x$

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

Question 6

6.1
B

6.2

education
 MPUMALANGA PROVINCE REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS TEST

TERM 1

MARKING GUIDELINE

Time: $\mathbf{1 , 5}$ hours

Time: 2 hours

Marks: 73 Section A
Marks: 100 Section A and B

QUESTION 1		
1.1	$\begin{align*} & -5 ; \quad 4 ; \quad 21 ; \quad 46 ; \ldots . \\ & \quad 9 \quad 17 \quad 25 \\ & \quad 8 \quad 8 \\ & 2 a=8 \\ & \therefore a=4 \\ & 3 a+b=9 \\ & 3(4)+b=9 \tag{4}\\ & \therefore b=-3 \\ & a+b+c=-5 \\ & 4-3+c=-5 \\ & \therefore c=-6 \\ & T_{n}=4 n^{2}-3 n-6 \\ & \hline \end{align*}$	$\begin{aligned} & \sqrt{ } a=4 \\ & \sqrt{ } b=-3 \\ & \sqrt{ } c=-6 \\ & \sqrt{ } T_{n} \end{aligned}$
1.2	$\begin{aligned} T_{(15)} & =4(15)^{2}-3(15)-6 \\ & =849 \end{aligned}$	\checkmark answer
1.3	$\begin{align*} & 364=4 n^{2}-3 n-6 \\ & 4 n^{2}-3 n-370=0 \\ & (4 n+37)(n-10)=0 \\ & n=\frac{-37}{4} \text { or } n=10 \\ & \therefore n=10 \tag{3} \end{align*}$	$\begin{aligned} & \checkmark 360=4 n^{2}-3 n-6 \\ & \checkmark \quad n=\frac{-37}{4}, \mathrm{NA} \\ & \checkmark \therefore n=10 \end{aligned}$
		[8]
QUESTION 2		
2.1.1	$\begin{aligned} & \sum_{i=2}^{m} 32(2)^{5-i}<500 \\ & 256+128+64+\ldots<500 \\ & S_{n}=\frac{a\left(1-r^{m}\right)}{1-r} \\ & \frac{256\left(1-\frac{1}{2}^{m}\right)}{1-\frac{1}{2}}<500 \\ & \frac{512\left(1-\frac{1}{2}^{m}\right)}{1}<500 \end{aligned}$	$\frac{256\left(1-\frac{1}{2}^{m}\right)}{1-\frac{1}{2}}<500$ \checkmark correct use of logs $\checkmark \therefore m>5.4$ $\checkmark m=6$

	$\begin{aligned} & 1-\frac{1}{2}^{m}<\frac{125}{128} \\ & \frac{1}{2}^{m}>\frac{3}{128} \\ & m>\log _{\frac{1}{2}} \frac{3}{128} \\ & m>5.4 \\ & \therefore m=6 \end{aligned}$	
2.1.2	$\begin{align*} S_{\infty}-S_{4} & =\frac{a}{1-r}-\frac{a\left(1-r^{n}\right)}{1-r} \\ & =\frac{256}{1-\frac{1}{2}}-\frac{256\left(1-\frac{1^{4}}{2}\right)}{1-\frac{1}{2}} \\ & =512-480 \\ & =32 \tag{3} \end{align*}$	$\sqrt{ } S_{\infty}-S_{4}$ \checkmark substitution \checkmark answer
		[7]
3.1	$\begin{align*} & 2 x ; x+1 ; 6-x ; \ldots \\ & x+1-2 x=6-x-(x+1) \\ & -+1=-2 x+5 \tag{2}\\ & x=4 \end{align*}$	$\checkmark T_{2}-T_{1}=T_{3}-T_{2}$ \checkmark answer
3.2	$\begin{align*} & 8 ; 5 ; 2 ; \ldots \\ & -575=\frac{n}{2}[2(8)+(n-1)(-3)] \\ & -1150=n(19-3 n) \\ & 3 n^{2}-19 n-1150=0 \\ & (3 n+50)(-23)=0 \\ & n=23 \text { or } n \neq-\frac{50}{3} \tag{4} \end{align*}$	\checkmark substitution of S_{n} \checkmark substitution of a and d \checkmark standard form $\checkmark n=23 \text { only }$
		[6]

QUESTION 4			
4.1	$\begin{aligned} S_{25} & =\frac{25}{8}[14-4(25)] \\ & =-268 \frac{3}{4} \end{aligned}$	\checkmark answer	(1)
4.2	$\begin{gathered} T_{25}=S_{25}-S_{24} \\ T_{25}=-268 \frac{3}{4}-\left(\frac{24}{8}[14-4(24)]=22 \frac{3}{4}\right) \end{gathered}$	\checkmark method \checkmark substitution \checkmark answer	(3)
4.3	$\begin{aligned} S_{1} & =T_{1}=\frac{1}{8}[14-4(1)]=\frac{5}{4} \\ T_{2} & =\frac{2}{8}[14-4(2)]-\frac{5}{4}=\frac{1}{4} \\ T_{3} & =\frac{3}{8}[14-4(3)]-\frac{3}{2}=-\frac{3}{4} \\ 5 ; 1 ;-3 ; \rightarrow T_{n}= & 9-4 n \\ \frac{5}{4} ; \frac{1}{4} ;-\frac{3}{4} ; \rightarrow T_{n} & =\frac{9-4 n}{4} \end{aligned}$	$\begin{aligned} & \checkmark^{\mathrm{S}_{1}=T_{1}=\frac{5}{4}} \\ & \checkmark^{T_{2}=\frac{1}{4}} \\ & \checkmark^{T_{3}}=-\frac{3}{4} \\ & \checkmark^{T_{n}}=9-4 n \\ & \checkmark^{T_{n}}=\frac{9-4 n}{4} \end{aligned}$	(5)
			[9]
QUESTION 5			
5.1.1	$\begin{aligned} \cos 334^{\circ} & =\cos \left(360^{\circ}-26^{\circ}\right) \\ & =\cos 26^{\circ} \\ & =q \end{aligned}$	\checkmark answer	(1)
5.1.2	$\begin{aligned} \sin 52^{\circ} & =\sin 2\left(26^{\circ}\right) \\ & =2 \sin 26^{\circ} \cos 26^{\circ} \\ & =2 \cdot \sqrt{1-q^{2}}(q) \\ & =2 q \sqrt{1-q^{2}} \end{aligned}$	\checkmark diagram \checkmark identity \checkmark answer	(3)
5.1.3	$\begin{aligned} \sin 86^{\circ}= & \sin \left(60^{\circ}+26^{\circ}\right) \\ = & \sin 60^{\circ} \cos 26^{\circ}+\cos 60^{\circ} \sin 26^{\circ} \\ = & \frac{\sqrt{3}}{2} \cdot q+\frac{1}{2} \sqrt{1-q^{2}} \end{aligned}$	\checkmark identity \checkmark answer	(2)

| | [6] |
| :--- | :--- | :--- |

QUESTION 6			
6.1	Constructions: Draw $P Q$ on $A B$ such that $P Q=A D$ Draw $P R$ on $A E$ such that $P R=A E$ In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{PQR}$ 1. $\mathrm{AD}=\mathrm{PQ}$ [construction] 2. $\mathrm{AE}=\mathrm{PR}$ [construction] 3. $\hat{A}=\hat{P} \quad$ [given] $\triangle \mathrm{ADE} \equiv \triangle \mathrm{PQR} \quad[S \angle S]$ $\hat{D}_{1}=\hat{\mathrm{Q}} \quad$ [from congruency] But $\hat{D}_{1}=\hat{B}$ $\therefore \hat{\mathrm{D}}_{1}=\hat{\mathrm{B}}$ $\therefore \mathrm{DE} / \mathrm{BC} \quad[$ corrsponding $\angle S$ equal $]$. $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}} \quad[\text { line } \\| \text { side of } \Delta]$ But $\mathrm{AD}=\mathrm{PQ}$ and $\mathrm{AE}=\mathrm{PR}$ [construction] $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$	\checkmark Construction \checkmark S/R \checkmark S/R $\checkmark \therefore \hat{\mathrm{D}}_{1}=\hat{\mathrm{B}}$ \checkmark S/R \checkmark S/R	

Downloaded from Stanmore physics.com

6.2.1	Line from centre to midpoint of chord	\checkmark Reason	(1)	
6.2.2	In \triangle ROP and $\triangle \mathrm{RVS}$ 1. $\hat{R}=\hat{R}$ [common] 2. $\hat{\mathrm{S}}_{1}=90^{\circ}$ [angle in semi-circle] $\hat{\mathrm{P}}_{2}=90^{\circ} \quad$ (proven) $\hat{S}_{1}=\hat{\mathrm{P}}_{2}$ 3. $\hat{\mathrm{V}}=\hat{\mathrm{O}}_{2} \quad($ angles in $\Delta)$ $\Delta \mathrm{ROP}\|\|\mid \mathrm{RVS} \quad[\angle ; \angle ; \angle]$	\checkmark S/R \checkmark R \checkmark S $\sqrt{ } \mathrm{R}$	(4)	
6.2.3	In $\triangle \mathrm{RVS}$ and $\triangle \mathrm{RST}$ 1. $\hat{R}=\hat{R} \quad$ (common) 2. $\hat{\mathrm{T}}_{1}=\hat{\mathrm{S}}_{1}=90^{\circ}$ (angle in semi circle) 3. $\mathrm{T} \hat{\mathrm{S}}=\hat{\mathrm{V}} \quad(\angle s$ in $\Delta)$ $\Delta \mathrm{RVS} \\| \mid \Delta \mathrm{RST} \quad(\angle ; \angle ; \angle)$	$\begin{array}{cc} \sqrt{ } & \sqrt{ } \mathrm{R} \\ \sqrt{ } \mathrm{R} & \end{array}$	(3)	
6.2.4	In Δ STV and Δ RST RTS $=V \hat{T} S=90^{\circ}$ (Angles on straight line) $\hat{\mathrm{R}}=90^{\circ}-\mathrm{T} \hat{\mathrm{S}} \mathrm{R}$ $=T \hat{S} V$ $\mathrm{TS} \mathrm{R}=\hat{\mathrm{V}} \quad($ angles in $\Delta)$ $\Delta \mathrm{RST} \\| \Delta \mathrm{STV} \quad([\mathrm{A}, \mathrm{A}, \mathrm{A})$ $\frac{\mathrm{RT}}{\mathrm{ST}}=\frac{\mathrm{TS}}{\mathrm{VT}} \quad$ (from similarity) $\mathrm{ST}^{2}=\mathrm{VT} . \mathrm{TR}$	\checkmark S \quad R \checkmark S \checkmark R \checkmark S	(5)	
			[19]	

QUESTION 7									
7.1									

OPTIONAL:

QUESTION 8

8.1.1	$\begin{aligned} & \sin 236^{\circ} \cdot \cos 169^{\circ}+\sin 371 \cdot \cos \left(-124^{\circ}\right) \\ & =-\sin 56^{\circ}\left(-\cos 11^{\circ}\right)+\sin 11^{\circ} \cdot\left(-\cos 56^{\circ}\right) \\ & =\sin \left(56^{\circ}-11^{\circ}\right) \\ & =\sin 45^{\circ} \\ & =\frac{1}{\sqrt{2}} \end{aligned}$	$\begin{align*} & \checkmark^{-\sin 56^{\circ}\left(-\cos 11^{\circ}\right)} \\ & \sqrt{ } \sin 11^{\circ} \cdot\left(-\cos 56^{\circ}\right. \\ & \sqrt{\sin 45^{\circ}} \\ & \frac{1}{\sqrt{2}} \tag{4} \end{align*}$
8.1.2	$\begin{align*} & \frac{-\cos ^{2} 10^{\circ}+\sin ^{2} 190^{\circ}}{\cos \left(-145^{\circ}\right) \cdot \cos 235^{\circ}} \\ & =\frac{-\cos ^{2} 10^{\circ}+\sin ^{2}\left(180^{\circ}+10^{\circ}\right)}{\cos \left(180-35^{\circ}\right) \cdot \cos \left(270^{\circ}-35\right)} \\ & =\frac{-\cos ^{2} 10^{\circ}+\sin ^{2} 10^{\circ}}{-\cos 35^{\circ} \cdot\left(-\sin 35^{\circ}\right)} \\ & =\frac{-\left(\cos ^{2} 10^{\circ}-\sin ^{2} 10^{\circ}\right)}{\cos 35^{\circ} \sin 35^{\circ}} \\ & =\frac{-\cos 2 \times 10^{\circ}}{\cos 35^{\circ} \sin 35^{\circ}} \\ & =\frac{-\cos 20^{\circ}}{\cos 35^{\circ} \sin 35^{\circ}} \\ & =\frac{-2 \cos 20^{\circ}}{2 \cos 35^{\circ} \sin 35^{\circ}} \\ & =\frac{-2 \cos 20^{\circ}}{\sin 2 \times 35^{\circ}} \\ & =\frac{-2 \sin 70^{\circ}}{\sin 70^{\circ}} \\ & =-2 \tag{6} \end{align*}$	$\sqrt{ }+\sin ^{2} 10^{\circ}$ $\begin{aligned} & \checkmark-\cos 35^{\circ} \\ & \checkmark-\sin 35^{\circ} \end{aligned}$ $\sqrt{ }-\cos 20^{\circ}$ $\begin{aligned} & \checkmark-2 \sin 70^{\circ} \\ & \sqrt{ } \sin 70^{\circ} \end{aligned}$
8.2.1	$\frac{\cos 2 \mathrm{~A}+\sin \mathrm{A}}{\cos ^{2} \mathrm{~A}}=\frac{2 \sin \mathrm{~A}+1}{1+\sin \mathrm{A}}$ LHS: $\begin{aligned} \frac{\cos 2 \mathrm{~A}+\sin \mathrm{A}}{\cos ^{2} \mathrm{~A}} & =\frac{1-2 \sin ^{2} A+\sin A}{1-\sin ^{2} A} \\ & =\frac{1+\sin A-2 \sin ^{2} A}{1-\sin ^{2} A} \end{aligned}$	$\begin{aligned} & \sqrt{ } 1-2 \sin ^{2} A \\ & \sqrt{ } 1-\sin ^{2} A \end{aligned}$

	$\begin{aligned} & \quad=\frac{(1+2 \sin A)(1-\sin A)}{(1-\sin A)(1+\sin A)} \\ & \quad=\frac{1+2 \sin A}{(1+\sin A)} \end{aligned} \therefore L H S=R H S{ }^{\therefore}$	\checkmark factorise numerator \checkmark factorise denominator
8.2.2	$\frac{\sin \left(x+45^{\circ}\right)}{\cos \left(x-45^{\circ}\right)}=\frac{\sin 2 x+1}{(\sin x+\cos x)^{2}}$ LHS: $\begin{aligned} \frac{\sin \left(x+45^{\circ}\right)}{\cos \left(x-45^{\circ}\right)} & =\frac{\sin x \cos 45^{\circ}+\cos c \sin 45^{\circ}}{\cos x \cos 45^{\circ}+\sin x \sin 45^{\circ}} \\ & =\frac{\sin x \cdot \frac{\sqrt{2}}{2}+\cos x \frac{\sqrt{2}}{2}}{\cos x \frac{\sqrt{2}}{2}+\sin x \frac{\sqrt{2}}{2}} \\ & =1 \end{aligned}$ RHS: $\begin{aligned} & \begin{aligned} \frac{\sin 2 x+1}{(\sin x+\cos x)^{2}} & =\frac{\sin 2 x+1}{\sin ^{2} x+\sin x \cos x+\cos ^{2} x} \\ & =\frac{\sin 2 x+1}{1+2 \sin x \cos x} \\ & =\frac{\sin 2 x+1}{1+\sin 2 x} \\ & =1 \end{aligned} \\ & \therefore L H S=\text { RHS } \end{aligned}$	$\begin{aligned} & \checkmark \sin x \cos 45^{\circ}+\cos c \sin 45^{\circ} \\ & \checkmark \cos x \cos 45^{\circ}+\sin x \sin 45^{\circ} \\ & \checkmark \text { Substituting } \frac{\sqrt{2}}{2} \\ & \checkmark 1 \end{aligned}$ \checkmark simplifying denominator \checkmark square identity $\checkmark 1$
8.3.1	$\begin{aligned} & 2 \sin \left(3 x-15^{\circ}\right)+1=0 \\ & \sin \left(3 x-15^{\circ}\right)=-\frac{1}{2} \\ & \text { Ref angle: } x=30^{\circ} \end{aligned}$ $3^{\text {rd }}$ $\begin{aligned} & 3 x-15^{\circ}=180^{\circ}+30^{\circ}+k .360^{\circ} ; \quad k \in \mathrm{Z} \\ & 3 x=225^{\circ}+k .360^{\circ} ; \quad k \in \mathrm{Z} \\ & x=75^{\circ}+k .120^{\circ} ; \quad k \in \mathrm{Z} \end{aligned}$ $4^{\text {th }}$ $\begin{align*} & 3 x-15^{\circ}=360^{\circ}-30^{\circ}+k \cdot 360^{\circ} ; \quad k \in \mathrm{Z} \\ & 3 x=345^{\circ}+k \cdot 360^{\circ} ; \quad k \in Z \tag{4} \end{align*}$	$\sqrt{ }^{\sin \left(3 x-15^{\circ}\right)}=-\frac{1}{2}$ $\begin{aligned} & \checkmark x=75^{\circ}+k .120^{\circ} \\ & \checkmark k \in Z \end{aligned}$ $\checkmark x=115^{\circ}+k .120^{\circ}$

Downloaded from Stanmorepfysics.com
\(\left.\begin{array}{|l|l|ll|}\hline \& x=115^{\circ}+k .120^{\circ} ; \quad k \in \mathrm{Z} \&

\hline 8.3 .2 \& x \in\left\{-245^{\circ} ;-165^{\circ} ;-125^{\circ} ;-45^{\circ} ;-5^{\circ}, 75^{\circ}\right\} \& \begin{array}{l}\sqrt{ } three correct

\sqrt{ } six correct\end{array} \& (2)\end{array}\right]\)

