

GRADE 12

MATHEMATICS

Date: 13 April 2021

Time: 2 hours

Marks: 100

Instructions:

Read the following instructions carefully before answering the questions.

- This question paper consists of 7 questions in Section A and one question in Section B
- Answer ALL the questions in **SECTION A** and **SECTION B** is optional.
- Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- Answers only will not necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and nongraphical), unless stated otherwise.
- o If necessary, round off answers to TWO decimal places, unless stated otherwise.

^{13 April 2021} Downloaded from Stanmorephysics.com O Diagrams are NOT necessarily drawn to scale.

- An information sheet, with formulae, is included at the end of the question paper.
- THE diagram sheet that is included at the end of the paper must be handed in with your test, with construction lines added to the diagrams where necessary.
- Number the answers correctly according to the numbering system used in this question paper.
- Write legibly and present your work neatly.

^{13 April 2021} <u>SECTION A</u> <u>QUESTION 1</u>

Given the sequence -5; 4; 21; 46;

1.1	Determine the general term of the above sequence.	(4)
1.2	Determine T ₁₅	(1)
1.3	Which term in the sequence will be equal to 364?	(3)
		[8]

QUESTION 2

$$2.1 \qquad \sum_{i=2}^{m} 32(2)^{5-i} < 500$$

2.1.1	Determine the value of m for which the above-mentioned	
	statement is true, by using the correct sum formula.	(4)
2.1.2	Determine the value for $S_{\infty} - S_4$	(3)
		[7]

QUESTION 3

2x; x + 1; 6 - x; ... are the first three (3) terms of an arithmetic sequence.

3.1	Determine the value for x .	(2)
3.2	If $x = 4$, how many terms in the sequence add up to -575 .	(4)

[6]

QUESTION 4

The sum of the first *n* terms of a series is given by : $S_n = \frac{n}{8}(14-4n)$

- 4.1 Determine the sum of the first 25 terms of this series. (1)
- 4.2 Determine the value of term 25. (3)
- 4.3 Determine the general term of the series (5)

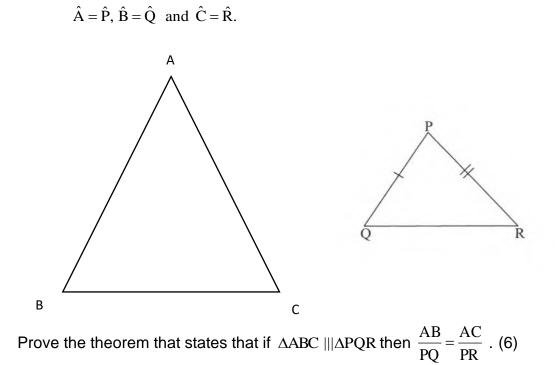
[9]

^{13 April 2021} <u>Question 5</u> ded from Stanmorephysics.com

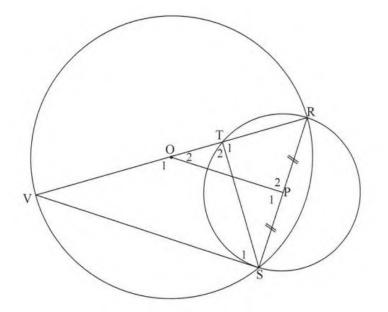
5.1	If $\cos 26^\circ = q$, write the following in terms of p :		
	5.1.1 cos334°	(1)	
	5.1.2 sin 52°	(3)	
	5.1.3 sin 86°	(2)	
		[6]	

Question 6

6.1 Given in the diagram below $\triangle ABC$ and $\triangle PQR$ with



^{13 April 2021} 6.2 Given in the diagram below, VR is the diameter of the circle with centre O. S is a point on the circumference. P is the midpoint of RS. The circle with RS as diameter intersects VR at T. ST, OP and SV are drawn.



- 6.2.1 Give a reason why $OP \perp RS$. (1)
- 6.2.2 Prove that $\Delta ROP \parallel \mid \Delta RVS$. (4)

6.2.3 Prove that $\Delta RVS \parallel \Delta RST$. (3)

6.2.4 Prove that $ST^2 = VT$. TR

(5)

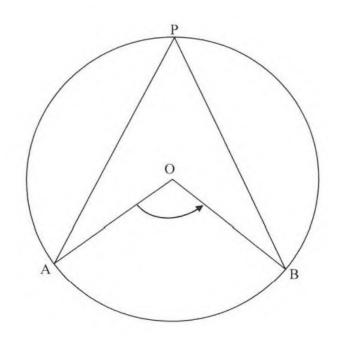
[19]

Term 1 Test 1

(5)

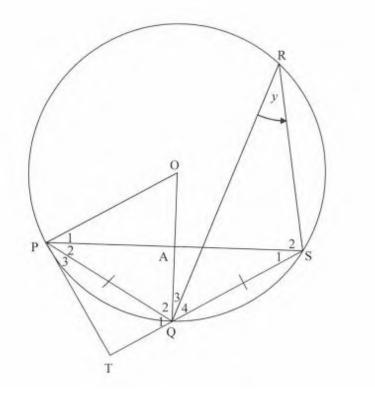
^{13 April 2021} <u>QUESTION d</u>ed from Stanmorephysics.com

7.1 In the diagram below, O is the centre of the circle and P is a point on the circumference of the circle. Arc AB subtends $A\hat{O}B$ at the centre of the circle and $A\hat{P}B$ at the circumference of the circle. Use the diagram to prove the theorem that states that $A\hat{O}B = 2A\hat{P}B$



^{13 April 2021} While a from Stanmore 7 of 12 com 7.2 In the diagram, O is the centre of the circle and P, Q, S and R are

points on the circle. PQ = QS and $Q\hat{R}S = y$. The tangent PT at P meets SQ produced at T. OQ intercepts PS at A.



7.2.1	Give a reason why $\hat{\mathbf{P}}_2 = y$.	(1)
7.2.2	Prove that PQ bisects TPS.	(4)
7.2.3	Determine \hat{POQ} in terms of y .	(2)
7.2.4	Prove that PT is a tangent to the circle that passes through	
	P, O and A.	(2)
7.2.5	Prove that $\hat{OAP} = 90^{\circ}$.	(4)
		[18]

Total Section A: 73 marks

SECTION B: OPTIONAL

QUESTION 8

8.1 Calculate the following without using calculator: 81.1 $\sin 236^{\circ} \cdot \cos 169^{\circ} + \sin 371 \cdot \cos (-124^{\circ})$ (4) 84.2 $-\cos 10^{\circ} + \sin^{2} 190^{\circ}$ (5)

8.1.2
$$\frac{-\cos(0^{\circ} + \sin^{\circ} 190^{\circ})}{\cos(-145^{\circ}).\cos(235^{\circ})}$$
 (6)

8.2 Prove the following identities:

8.2.1
$$\frac{\cos 2A + \sin A}{\cos^2 A} = \frac{2\sin A + 1}{1 + \sin A}$$
 (5)

8.2.2
$$\frac{\sin(x+45^\circ)}{\cos(x-45^\circ)} = \frac{\sin 2x+1}{(\sin x+\cos x)^2}$$
 (6)

8.3 Determine the general solution for:

$$8.3.3 \quad 2\sin(3x - 15^\circ) + 1 = 0 \tag{4}$$

8.3.4 Hence determine all possible values for x, If $x \in [-270^\circ; 90^\circ]$ (2)

Total Section B: 27 marks

^{13 April 2021} Downloaded from Stanmorephysics com INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d)$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_x = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x(1 - (1+i)^{-n})}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

$$ln \ \Delta ABC: \quad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cos A \quad area \ \Delta ABC = \frac{1}{2} ab \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos(2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)} \qquad P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

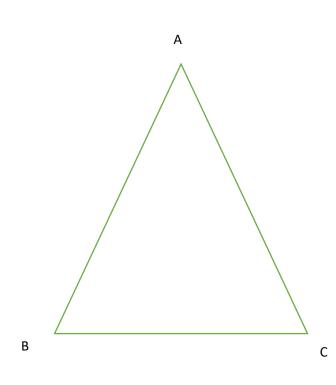
$$\hat{y} = a + bx \qquad b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

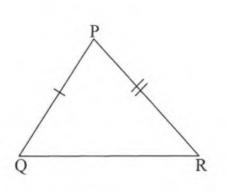
 $\hat{y} = a + bx$

^{13 April 2621} While added from Stanmorephysics.com

Question 6

6.1

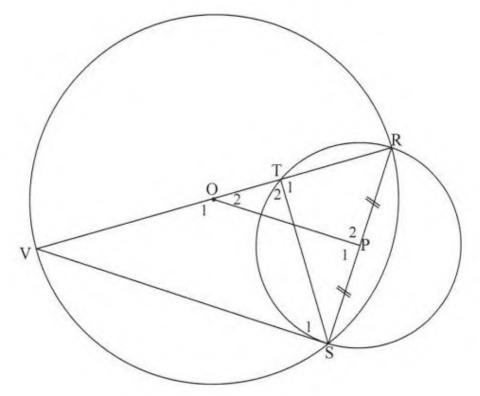


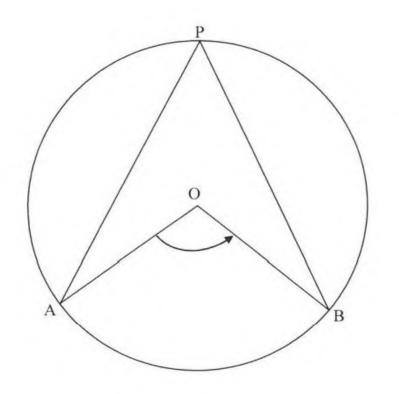


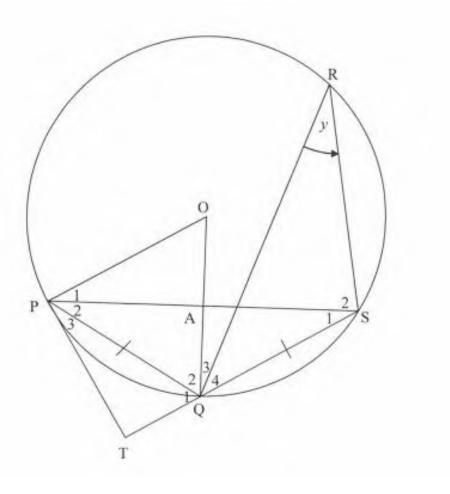
6.2

^{13 April 2021} Downloaded from Stanmorephysics.com

Term 1 Test 1







education MPUMALANGA PROVINCE REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS TEST

TERM 1

MARKING GUIDELINE

2021

Time: 1,5 hours

Marks: 73 Section A

Time: 2 hours

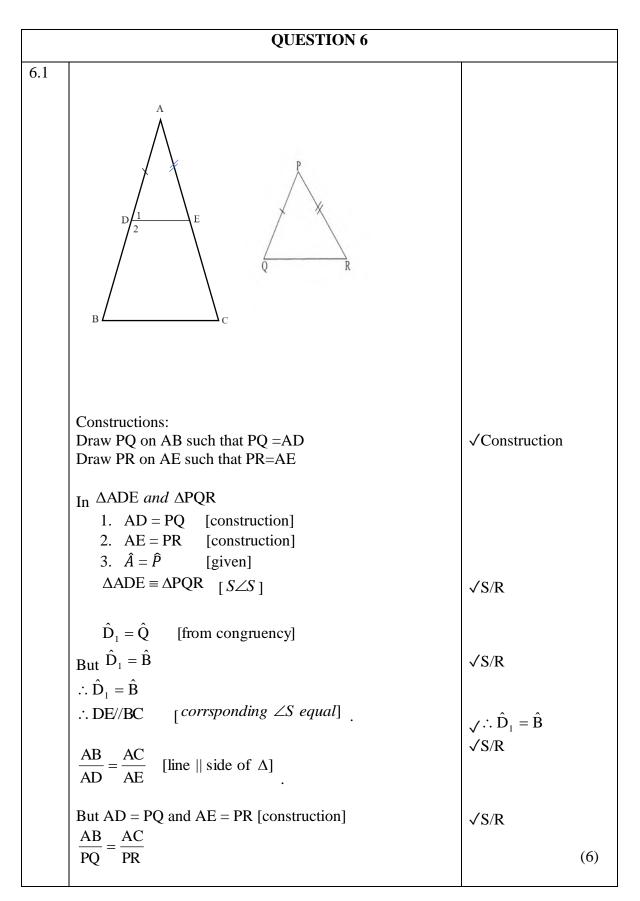
Marks: 100 Section A and B

	QUESTION 1			
1.1	-5; 4; 21; 46;	$\sqrt{a}=4$		
	9 17 25	$\sqrt{b} = -3$		
	8 8			
	2a=8	$\sqrt{c} = -6$		
	$\therefore a = 4$	$\sqrt[n]{a=4}$ $\sqrt{b=-3}$ $\sqrt{c=-6}$ $\sqrt{T_n}$		
	3a + b = 9			
	3(4) + b = 9	(4)		
	$\therefore b = -3$			
	a+b+c=-5			
	4 - 3 + c = -5			
	$\therefore c = -6$			
	$T_n = 4n^2 - 3n - 6$			
1.2	$T_{(15)} = 4(15)^2 - 3(15) - 6$	\sqrt{answer} (1)		
	=849			
1.3	$364 = 4n^2 - 3n - 6$	$\checkmark 360 = 4n^2 - 3n - 6$		
	$364 - 4n - 3n - 6$ $4n^2 - 3n - 370 = 0$			
	$4n^{-} - 3n - 370 = 0$ (4n + 37)(n - 10) = 0	$\sqrt{n} = \frac{-37}{4}$, NA		
		$\checkmark 4 \text{, NA}$ $\checkmark \therefore n = 10$		
	$n = \frac{-37}{4} \text{ or } n = 10$			
	$\therefore n = 10$	(3)		
		[8]		
0.1.1	QUESTION 2			
2.1.1	$\sum_{i=1}^{m} 32(2)^{5-i} < 500$	$256\left(1-\frac{1}{m}\right)$		
	$\overline{i=2}$ 256+128+64+<500	$\frac{256\left(1-\frac{1}{2}\right)}{500}$		
		$1 - \frac{1}{2}$		
	$S_n = \frac{a(1-r^m)}{1-r}$	\checkmark 2		
	$\begin{pmatrix} 1^m \end{pmatrix}$	√correct use of logs		
	$256(1-\frac{1}{2})$	$\checkmark :.m > 5.4$		
	$\frac{256\left(1-\frac{1}{2}^{m}\right)}{1-\frac{1}{2}} < 500$			
	$1 - \frac{1}{2}$	$\sqrt{m} = 6$		
	$\begin{pmatrix} 1 & m \end{pmatrix}$			
	$512\left(1-\frac{1}{2}\right)$	(4)		
	$\frac{(2)}{1} < 500$			
		1		

	$1 - \frac{1}{2}^m < \frac{125}{128}$	
	$\frac{1}{2}^m > \frac{3}{128}$	
	$m > \log_{\frac{1}{2}} \frac{3}{128}$ m > 5.4	
	$\therefore m=6$	
2.1.2	$S_{\infty} - S_{4} = \frac{a}{1 - r} - \frac{a(1 - r^{n})}{1 - r}$	
2.1.2	$=\frac{256}{1-\frac{1}{2}}-\frac{256\left(1-\frac{1}{2}^{4}\right)}{1-\frac{1}{2}}$	$\checkmark S_{\infty} - S_4$
		√substitution
	= 512 - 480 = 32	\sqrt{answer} (3)
		[7]
3.1	QUESTION 3 $2x; x+1; 6-x; \ldots$	
	x + 1 - 2x = 6 - x - (x + 1) -+1 = -2x + 5 x = 4	$\sqrt[]{T_2 - T_1} = T_3 - T_2$ $\sqrt{\text{answer}} $ (2)
3.2	8; 5; 2;	
	$-575 = \frac{n}{2} [2(8) + (n-1)(-3)]$	$\checkmark \text{ substitution of } S_n$ $\checkmark \text{ substitution of } a \text{ and } d$
	$-1150 = n(19 - 3n)$ $3n^2 - 19n - 1150 = 0$	√standard form
	(3n+50)(-23) = 0	
	$n = 23 \text{ or } n \neq -\frac{50}{3}$	$\sqrt{n} = 23 \text{ only}$ (4)
		[6]

	QUESTION 4		
4.1	$S_{25} = \frac{25}{8} [14 - 4(25)]$	√answer	(1)
	$=-268\frac{3}{4}$		
4.2	$T_{25} = S_{25} - S_{24}$ $T_{25} = -268 \frac{3}{4} - \left(\frac{24}{8}[14 - 4(24)] = 22\frac{3}{4}\right)$	√method √substitution √answer	(3)
4.3	$S_1 = T_1 = \frac{1}{8} [14 - 4(1)] = \frac{5}{4}$ $T_2 = \frac{2}{5} [14 - 4(2)] = \frac{5}{1}$	$\checkmark S_1 = T_1 = \frac{5}{4}$	
	$T_{2} = \frac{2}{8} [14 - 4(2)] - \frac{5}{4} = \frac{1}{4}$ $T_{3} = \frac{3}{8} [14 - 4(3)] - \frac{3}{2} = -\frac{3}{4}$	$\sqrt{T_2} = \frac{1}{4}$ $\sqrt{T_3} = -\frac{3}{4}$	
	5; 1; -3; → $T_n = 9 - 4n$ $\frac{5}{4}; \frac{1}{4}; -\frac{3}{4}; \rightarrow T_n = \frac{9 - 4n}{4}$	$\sqrt{T_n} = 9 - 4n$ $\sqrt{T_n} = \frac{9 - 4n}{4}$	
		\sqrt{n} 4	(5)
	QUESTION 5		[9]
5.1.1	QUESTIONS		
	$\cos 334^\circ = \cos(360^\circ - 26^\circ)$ $= \cos 26^\circ$	√answer	
	=q		(1)
5.1.2	$\frac{1}{26^{\circ}}$ $\sqrt{1-q^2}$		
	$\sin 52^\circ = \sin 2(26^\circ)$	√diagram	
	$= 2\sin 26^{\circ}\cos 26^{\circ}$		
	$=2.\sqrt{1-q^2}(q)$	√identity	
	$=2q\sqrt{1-q^2}$	√answer	(3)
5.1.3	$\sin 86^{\circ} = \sin(60^{\circ} + 26^{\circ})$ = sin 60° cos 26° + cos 60° sin 26° = $\frac{\sqrt{3}}{2} \cdot q + \frac{1}{2}\sqrt{1 - q^2}$	√identity	
	-2 -2 $\sqrt{1-q}$	√answer	(2)

	[6]
--	-----



6.2.1	Line from centre to midpoint of chord	√Reason	(1)
6.2.2	In $\triangle ROP$ and $\triangle RVS$ 1. $\hat{R} = \hat{R}$ [common]		
		√S/R	
	2. $\hat{S}_1 = 90^\circ$ [angle in semi-circle] $\hat{P}_2 = 90^\circ$ (proven)	√R	
	$\hat{\mathbf{S}}_1 = \hat{\mathbf{P}}_2$	√S	
	3. $\hat{V} = \hat{O}_2$ (angles in Δ)	√R	(4)
	$\Delta \text{ROP} \parallel \Delta \text{RVS} [\angle; \angle; \angle]$		
6.2.3	In ΔRVS and ΔRST		
	1. $\hat{\mathbf{R}} = \hat{\mathbf{R}}$ (common)		
	2. $\hat{T}_1 = \hat{S}_1 = 90^\circ$ (angle in semi circle)	√S √R	
	3. $T\hat{S}R = \hat{V}$ ($\angle s \text{ in } \Delta$)	√R	
	$\Delta RVS \parallel \Delta RST \qquad (\angle; \angle; \angle)$		(3)
6.2.4	In \triangle STV and \triangle RST $\hat{RTS} = \hat{VTS} = 90^{\circ}$ (Angles on straight line) $\hat{R} = 90^{\circ} - \hat{TSR}$ $= \hat{TSV}$	√S √R √S	
	$\begin{split} T\hat{S}R &= \hat{V} & (\text{angles in } \Delta) \\ \Delta RST \parallel \Delta STV & ([A,A,A) \\ \frac{RT}{ST} &= \frac{TS}{VT} & (\text{from similarity}) \end{split}$	√R	
	$ST^2 = VT. TR$	√S	(5)
			[19]

QUESTION 7		
7.1		
Construction: Draw PO extended	√Construction	L
$OP = OA (radii)$ $\hat{P}_1 = \hat{A} (angles opp. equal sides)$ $But \ \hat{O}_1 = \hat{P}_1 + \hat{A} (ext. angle of triangle)$ $\hat{O}_1 = 2\hat{P}_1$	√S/R √S/R	
Similarly	√S	
$\hat{O}_2 = 2\hat{P}_2$ $A\hat{O}B = 2A\hat{P}B$	√S	(5)
7.2.1 Angles in the same segment	√answer	(1)
7.2.2 $\hat{\mathbf{P}}_2 = \hat{S}_1 = y$ (angles opp equal sides) $\hat{\mathbf{S}}_1 = \hat{\mathbf{P}}_3 = y$ (tan cord theorem)	√S √R	
$ \begin{array}{c} \mathbf{S}_1 = \mathbf{P}_3 = y \text{(tan cord theorem)} \\ \hat{\mathbf{P}}_2 = \hat{\mathbf{P}}_3 \\ \text{PQ bisects TPS} \end{array} $	$\sqrt{S} \sqrt{R}$	(4)
7.2.3 $\hat{POQ} = 2\hat{S}_1 = 2y$ (\angle at centre = 2 \angle at circumference)	\sqrt{S} \sqrt{R}	(2)
7.2.4 $T\hat{P}A = \hat{P}_2 + \hat{P}_3$ (proven) $T\hat{P}A = P\hat{Q}O$ (proven) PT is a tangent (converse theorem tan cord)	√S √R	(2)
7.2.5 $\hat{OPQ} + \hat{OQP} = 180^{\circ} - 2y$ (angles of triangle)	\sqrt{S} \sqrt{R}	
$\hat{OQP} = 90^{\circ} - y$ (angles opp equal sides)	√S/R	
$90^{\circ} - y + y + Q\hat{A}P = 180^{\circ}$ $Q\hat{A}P = 90^{\circ}$	√S	(4)
		[18]

OPTIONAL:

QUESTION 8

011		: 5 (0) (110)
8.1.1	$\sin 236^{\circ} \cdot \cos 169^{\circ} + \sin 371 \cdot \cos(-124^{\circ})$	$\sqrt{-\sin 56^\circ(-\cos 11^\circ)}$
	$=-\sin 56^{\circ}(-\cos 11^{\circ})+\sin 11^{\circ}.(-\cos 56^{\circ})$	$\sqrt{\sin 11^\circ}.(-\cos 56^\circ)$
	$=\sin(56^\circ-11^\circ)$	
	$=\sin 45^{\circ}$	√ sin 45°
	$=\frac{1}{\sqrt{2}}$	1
	$-\sqrt{2}$	$\sqrt{\sqrt{2}}$ (4)
8.1.2	2.000	$\sqrt{\sqrt{2}}$ (4)
0.1.2	$\frac{-\cos^2 10^\circ + \sin^2 190^\circ}{10^\circ + \sin^2 190^\circ}$	
	cos(-145°).cos235°	
	$=\frac{-\cos^2 10^\circ + \sin^2 (180^\circ + 10^\circ)}{10^\circ + \sin^2 (180^\circ + 10^\circ)}$	
	$\cos(180-35^{\circ}).\cos(270^{\circ}-35)$	
	$=\frac{-\cos^2 10^\circ + \sin^2 10^\circ}{10^\circ}$	$\checkmark + \sin^2 10^\circ$
	$=\frac{1}{-\cos 35^{\circ}.(-\sin 35^{\circ})}$	
		$\sqrt{-\cos 35^{\circ}}$
	$=\frac{-\left(\cos^2 10^\circ - \sin^2 10^\circ\right)}{10^\circ}$	$\sqrt{-\sin 35^\circ}$
	$= \frac{1}{\cos 35^\circ \sin 35^\circ}$	
	$-\cos 2 \times 10^{\circ}$	
	$=\frac{1}{\cos 35^{\circ} \sin 35^{\circ}}$	
	$-\cos 20^{\circ}$	$\sqrt{-\cos 20^\circ}$
	$=\frac{1}{\cos 35^{\circ} \sin 35^{\circ}}$	$\sqrt{-\cos 20}$
	$-2\cos 20^{\circ}$	
	$=\frac{1}{2\cos 35^{\circ}\sin 35^{\circ}}$	
	$-2\cos 20^{\circ}$	
	$=\frac{1}{\sin 2\times 35^{\circ}}$	
	$-2\sin 70^{\circ}$	$\sqrt{-2\sin 70^\circ}$
	$=$ $\frac{1}{\sin 70^{\circ}}$	√ sin 70°
	=-2	(6)
8.2.1	$\frac{\cos 2A + \sin A}{\cos 2A} = \frac{2\sin A + 1}{\cos 2A}$	
	$\cos^2 A = 1 + \sin A$	
	LHS:	
		$\sqrt{1-2\sin^2 A}$
	$\frac{\cos 2A + \sin A}{\cos^2 A} = \frac{1 - 2\sin^2 A + \sin A}{1 - \sin^2 A}$	$\sqrt{1-\sin^2 A}$
	$1+\sin A-2\sin^2 A$	
	$=\frac{1+\sin A}{1-\sin^2 A}$	
	1-311 A	

	$= \frac{(1+2\sin A)(1-\sin A)}{(1-\sin A)(1+\sin A)}$ $= \frac{1+2\sin A}{(1+\sin A)}$ $\therefore LHS = RHS$	√factorise numerator √factorise denominator (4)
8.2.2	$\frac{\sin(x+45^{\circ})}{\cos(x-45^{\circ})} = \frac{\sin 2x+1}{(\sin x + \cos x)^2}$	
	LHS: $ \frac{\sin(x+45^{\circ})}{\cos(x-45^{\circ})} = \frac{\sin x \cos 45^{\circ} + \cos c \sin 45^{\circ}}{\cos x \cos 45^{\circ} + \sin x \sin 45^{\circ}} $ $ = \frac{\sin x \cdot \frac{\sqrt{2}}{2} + \cos x \frac{\sqrt{2}}{2}}{\cos x \frac{\sqrt{2}}{2} + \sin x \frac{\sqrt{2}}{2}} $ $ = 1 $	$\sqrt{\sin x \cos 45^\circ + \cos c \sin 45^\circ}$ $\sqrt{\cos x \cos 45^\circ + \sin x \sin 45^\circ}$ $\sqrt{5}$ Substituting $\frac{\sqrt{2}}{2}$ $\sqrt{1}$
	RHS: $\frac{\sin 2x + 1}{(\sin x + \cos x)^2} = \frac{\sin 2x + 1}{\sin^2 x + \sin x \cos x + \cos^2 x}$ $= \frac{\sin 2x + 1}{1 + 2\sin x \cos x}$ $= \frac{\sin 2x + 1}{1 + \sin 2x}$ $= 1$ $\therefore LHS = RHS$	√simplifying denominator √square identity √1 (7)
8.3.1	$2\sin(3x-15^\circ) + 1 = 0$ $\sin(3x-15^\circ) = -\frac{1}{2}$ Ref angle: $x = 30^\circ$ 3^{rd}	$sin(3x-15^\circ) = -\frac{1}{2}$
	$3x - 15^{\circ} = 180^{\circ} + 30^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $3x = 225^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $x = 75^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$ 4th	$\sqrt{x} = 75^{\circ} + k.120^{\circ}$ $\sqrt{k} \in \mathbb{Z}$
	$3x - 15^\circ = 360^\circ - 30^\circ + k.360^\circ; k \in \mathbb{Z}$ $3x = 345^\circ + k.360^\circ; k \in \mathbb{Z}$	$\checkmark x = 115^{\circ} + k.120^{\circ} \tag{4}$

	$x = 115^\circ + k.120^\circ; k \in \mathbb{Z}$		
8.3.2	$x \in \{-245^\circ; -165^\circ; -125^\circ; -45^\circ; -5^\circ, 75^\circ\}$	√ three correct √six correct	(2)