HARRY GWALA DISTRICT

NATIONAL SENIOR CERTIFICATE

GRADE 12

Marks: 75

Time: 1hr 30mins

This question paper consists of $\mathbf{6}$ pages 1 diagram sheet and an information sheet.

Downloaded from Stanmorepfysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 7 questions.
2. Answer ALL questions.
3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
4. Answers only will not necessarily be awarded full marks.
5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

QUESTION 1

In the diagram below, the circle centred at $\mathrm{E}(3 ; 1)$ passes through point $\mathrm{P}(5 ;-5)$.

1.1 Determine the equation of:
1.1.1 \quad The circle in the form $x^{2}+y^{2}+\mathrm{A} x+\mathrm{B} y+\mathrm{C}=0$.
1.1.2 The tangent to the circle at $\mathrm{P}(5 ;-5)$ in the form $y=\mathrm{m} x+c$.
1.2 A smaller circle is drawn inside the circle. Line EP is a diameter of the small circle. Determine the:
1.2.1 Coordinates of the centre of the smaller circle.
1.2.2 Length of the radius.
1.3 Hence, or otherwise, determine whether point $C(9 ; 3)$ lies inside or outside the circle centre at E .

QUESTION 2

Given: $\quad f(x)=\left(\frac{1}{5}\right)^{x}$
2.1 Determine the equation of f^{-1} in the form $y=$
2.2 Sketch the graphs of f and $\quad f^{-1}$ on the same system of axes on the diagram sheet. Clearly show all intercepts with the axes.
2.3 Write down the domain of f^{-1}.
2.4 For which values of x will $f(x) \cdot f^{-1}(x) \geq 0$?
2.5 Write down the range of $g(x)$ if $g(x)=-f(x)-3$.

QUESTION 3

3.1 Given: $f(x)=2.2^{x}-1$
3.1.1 Write down the range of f.
3.1.2 $g(x)=f(x-1)+1$. Write down the equation of g^{-1}, the inverse of g in the form $y=\ldots$
3.2 Given: $h(x)=-\sqrt{\frac{x}{3}} ; x \geq 0$
3.2.1 If $k(x)$ is the inverse of h, give the equation of $k(x)$
3.2.2 Give the coordinates of the point of intersection of $h(x)$ and $k(x)$

QUESTION 4

4.1 From first principles, determine $f^{\prime}(x)$ if $f(x)=4 x^{2}-x$.
4.2 Determine: $D_{x}\left[x^{2}-\frac{1}{2 x^{3}}+\sqrt{x}\right]$

QUESTION 5

The sketch below shows the graph of $p^{\prime}(x)$ where $p(x)=x^{3}+b x^{2}+24 x+c . \mathrm{A}(2 ; 0)$ is an x intercept of both $p(x)$ and $p^{\prime}(x) . \mathrm{C}$ is the other x-intercept of $p^{\prime}(x)$.

5.1 Show that the numerical value of b is equal to -9 .

Clearly show all your calculations.
5.2 Calculate the coordinates of C.
5.3 For which value(s) of x will $p(x)$ be increasing?
5.4 Calculate the value(s) of x for which the graph of p is concave up.
5.5 Sketch a possible graph of $p(x)$. Clearly indicate the x-coordinates of the turning points and the point of inflection.

Downloaded from Stanmorepfysics.com

QUESTION 6

6.1 If a car valued at R255 000 depreciates on a reducing balance method at an interest rate of $12,5 \%$ p.a., calculate the book value of the car after 7 years.
6.2 How long will it take for a motor car to double in value if the annual inflation rate is $8,5 \%$?

QUESTION 7

In the diagram below, B, C and D are three points on the same horizontal plane such that $\mathrm{BD}=\mathrm{DC}=y . \mathrm{C} \hat{\mathrm{BD}}=\alpha$ and $\mathrm{A} \hat{\mathrm{BD}}=\theta$. Line $\mathrm{BC}=x$.

Prove that $\mathrm{AB}=\frac{x}{2 \cos \alpha \cos \theta}$
$\underline{\text { TOTAL }=75}$

Downloaded from Stanmorepfysics.com

DIAGRAM SHEET

Name and Surname: \qquad

Class:

QUESTION 2.2

Please hand in this page with your Answer Script

INFORMATION SHEET: MATHEMATICS

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \quad A=P(1+i)^{n}$
$T_{n}=a+(n-1) d \quad \mathrm{~S}_{n}=\frac{n}{2}(2 a+(n-1) d)$
$T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; r \neq 1 \quad S_{\infty}=\frac{a}{1-r} ;-1<r<1$
$F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
$y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta$
$(x-a)^{2}+(y-b)^{2}=r^{2}$
In $\triangle A B C: \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \quad$ area $\triangle A B C=\frac{1}{2} a b \cdot \sin C$
$\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta \quad \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta$
$\cos 2 \alpha=\left\{\begin{array}{l}\cos ^{2} \alpha-\sin ^{2} \alpha \\ 1-2 \sin ^{2} \alpha \\ 2 \cos ^{2} \alpha-1\end{array} \quad \sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha\right.$
$\bar{x}=\frac{\sum x}{n}$
$\mathrm{P}(A)=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$
$\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$
$\hat{y}=a+b x$
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
$b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}$

KWAZULU-NATAL PROVINCE
 EDUCATION
 REPUBLIC OF SOUTH AFRICA

HARRY GWALA DISTRICT

NATIONAL SENIOR CERTIFICATE

Marks: 75

Time:
1hr 30min

QUESTION 1

Downloaded from Stanmorepfysics.com

1.3	$r=\sqrt{40}$	$\checkmark r=\sqrt{40}$
	EC $=\sqrt{(9-3)^{2}+(3-1)^{2}}$	\checkmark distance EC
	$=2 \sqrt{10}$	\checkmark motivation
	C is on the circumference	

QUESTION 2

2.1	$y=\log _{\frac{1}{5}} x$	$\checkmark \checkmark$ answer	(2)
2.2		f : $\checkmark(0 ; 1)$ \checkmark shape $f^{-1}:$ $\checkmark(1 ; 0)$ \checkmark shape	(4)
2.3	$x>0 ; x \in R$	$\checkmark \checkmark$ answer DO NOT PENALIZE IF $x \in R$ IS OMITTED	(2)
2.4	$0<x \leq 1 ; x \in R$	$\checkmark \checkmark$ answer DO NOT PENALIZE IF $x \in R$ IS OMITTED	(2)
2.5 $y<-3 ; y \in R$ $\checkmark \checkmark$ answer DO NOT PENALIZE IF $x \in R$ IS OMITTED			(2)
			[12]

QUESTION 3

3.1 .1	$y>-1 ; y \in \mathrm{R}$	$y>0 ; y \in \mathrm{R}$	2

Downloaded from Stanmorepfysics.com

3.1 .2	$g(x)=2^{x}$ $\therefore g^{-1}: y=\log _{2} x$	$g(x)=2^{x}$ $y=\log _{2} x$	2
3.2 .1	$k(x)=3 x^{2} ; x \leq 0$	$k(x)=3 x^{2}$ $x \leq 0$	2
3.2 .2	$(0 ; 0)$ OR	Answer	2

QUESTION 4

Penalise for notation: Only once in this question.

4.1	$\begin{aligned} & f(x)=4 x^{2}-x \\ & \begin{aligned} f(x+h) & =4(x+h)^{2}-(x+h) \\ & =4\left(x^{2}+2 x h+h^{2}\right)-x-h \\ & =4 x^{2}+8 x h+4 h^{2}-x-h \end{aligned} \\ & \begin{aligned} f(x+h)- & f(x)=8 x h+4 h^{2}-h \\ & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h(8 x+4 h-1)}{h} \\ = & \lim _{h \rightarrow 0}(8 x+4 h-1) \\ = & 8 x-1 \end{aligned} \end{aligned}$	$\checkmark 4 x^{2}+8 x h+4 h^{2}-x-h$ $\checkmark 8 x h+4 h^{2}-h$ \checkmark factorising \checkmark simplify \checkmark answer CA	(5)
4.2	$\begin{aligned} & D_{x}\left[x^{2}-\frac{1}{2 x^{3}}+\sqrt{x}\right] \\ & =D_{x}\left[x^{2}-\frac{1}{2} x^{-3}+x^{\frac{1}{2}}\right] \\ & =2 x+\frac{3}{2} x^{-4}+\frac{1}{2} x^{-\frac{1}{2}} \end{aligned}$	$\checkmark 2 x$ $\checkmark \frac{3}{2} x^{-4}$ only CA if index is negative integer. $\checkmark \frac{1}{2} x^{-\frac{1}{2}}$ only CA if index is rational	(3)

QUESTION 5

\($$
\begin{array}{|l|l|l|l|}\hline 5.1 & \begin{array}{l}p^{\prime}(x)=3 x^{2}+2 b x+24 \\
\text { subst A(2;0) } \\
0=3(2)^{2}+2 b(2)+24 \\
-36=4 b \\
-9=b\end{array}
$$ \& \checkmark p^{\prime}(x) \&

\hline 5.2 \& \begin{array}{l}p^{\prime}(x)=0

3 x^{2}-18 x+24=0\end{array} \& \checkmark subst\end{array} \quad\) (3)C $\left.\begin{array}{l}\text { answer }\end{array}\right]$| (3)R R |
| :--- |

	$x^{2}-6 x+8=0$ $(x-2)(x-4)=0$ $x=2 ; x=4$ $C(4 ; 0)$		\checkmark factors $\checkmark C(4 ; 0)$	
5.3	p increasing $:$ $p^{\prime}(x)>0$. $x<2$ or $x>4$	$\checkmark p^{\prime}(x)>0$ $\checkmark x<2$ or $x>4$ CA from 8.4.2	(3)C	

QUESTION 6

6.1	$\begin{aligned} A & =P(1-i)^{n} \\ A & =255000(1-0,125)^{7} \\ & =\mathrm{R} \quad 100137,45 \end{aligned}$	A \checkmark formula $\mathrm{A} \checkmark$ correct substitution CA \checkmark answer	(3)
6.2	$\begin{aligned} A & =P(1+i)^{n} \\ 2 x & =x(1+0,085)^{n} \\ n & =\frac{\log 2}{\log (1+0,085)} \\ & =9 \text { years } \end{aligned}$	$\checkmark \checkmark$ correct substitution into correct formula \checkmark making n the subject \checkmark answer	(4)

QUESTION 7

7.1	$\begin{align*} & \mathrm{BDC}=180^{\circ}-2 \alpha \\ & \frac{y}{\sin \alpha}=\frac{x}{\sin 180^{\circ}-2 \alpha} \\ & y=\frac{x \sin \alpha}{\sin \left(180^{\circ}-2 \alpha\right)} \\ & y=\frac{x \sin \alpha}{2 \sin \alpha \cos \alpha} \\ & y=\frac{x}{2 \cos \alpha} \\ & \cos \theta=\frac{\mathrm{BD}}{\mathrm{AB}} \\ & \mathrm{AB} \cos \theta=\mathrm{BD} \\ & \mathrm{AB}=\frac{\mathrm{BD}}{\cos \theta} \\ & \mathrm{AB}=\frac{x}{2 \cos \alpha} \div \cos \theta \\ & \mathrm{AB}=\frac{x}{2 \cos \alpha} \times \frac{1}{\cos \theta} \\ & \mathrm{AB}=\frac{x}{2 \cos \alpha \cos \theta} \tag{7} \end{align*}$	$\checkmark \mathrm{BDC}=180^{\circ}-2 \alpha$ \checkmark method \checkmark substitution $\checkmark 2 \sin \alpha \cos \alpha$ $\checkmark \mathrm{AB}=\frac{\mathrm{BD}}{\cos \theta}$ \checkmark substitution BD \checkmark simplification

