NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150
TIME: 3 hours
N.B. This question paper consists of 9 pages and an information sheet.

Downloaded from Stanmorepfysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 13 questions.
2. Answer ALL questions.
3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
4. Answers only will not necessarily be awarded full marks.
5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

Downloaded from Stannscore pfysics.com

QUESTION 1

1.1 Solve for x :
1.1.1 $2 x(3-x)=0$
1.1.2 $5 x^{2}-4 x=2$ (Rounded off to 2 decimal places)
1.1.3 $\sqrt{7+3 x}+2 x=0$

$$
\begin{equation*}
\text { 1.1.4 } \quad 3^{x+2}+3^{2-x}=82 \tag{5}
\end{equation*}
$$

1.2 For which values of x will $\sqrt{x^{2}-5 x+4}$ be real?
1.3 Solve for x and y simultaneously if:

$$
\begin{equation*}
x y=12 \text { and } x-4=y \tag{5}
\end{equation*}
$$

QUESTION 2

The $p^{\text {th }}$ term of the first differences of a quadratic sequence is given by $T_{p}=3 p-2$.
2.1 Determine between which two consecutive terms of the quadratic sequence the first difference is equal to 1450 .
2.2 The $40^{\text {th }}$ term of the quadratic sequence is 2290 and $\mathrm{T}_{n}=a n^{2}+b n+c$ is the $n^{\text {th }}$ term of the quadratic sequence. Calculate the value of c.

Downloaded from Stanmorepfysics.com

QUESTION 3

3.1 The first four terms of an arithmetic sequence are:

```
65; 73; 81; 89;...
```

3.1.1 Determine an expression for the $n^{\text {th }}$ term.
3.1.2 Calculate value of the term in the $1000^{\text {th }}$ position.
3.1.3 Calculate the sum of the first 1000 terms.
3.2 An arithmetic and geometric sequence have the same first term, 5. The common difference and common ratio have the same value. The $5^{\text {th }}$ term of the geometric sequence is 80 . Determine the first three terms of the arithmetic sequence(s).

QUESTION 4

Calculate the value of y if

$$
\sum_{p=1}^{5}(4 y+3 p)+\sum_{k=4}^{7} 3 \cdot(2)^{k-1}=\sum_{j=1}^{\infty}\left(\frac{1}{3}\right)^{j-1}
$$

QUESTION 5

Given $g(x)=-\frac{4}{x-1}+2$
5.1 Write down the equations of the asymptotes of g.
5.2 Determine the intercepts of the graph of g with the axes.
5.3 Sketch the graph of g. Show all intercepts with the axes as well as the asymptotes of the graph.

Downloaded from Stanserefysics.com

QUESTION 6

Sketched below are the graphs of $f(x)=-x^{2}+4 x+5$ and $g(x)=m x+c$.
f and g intersect at B and D . B and D are the x - and y-intercepts of g, respectively. C is the turning point of f. V is a point on g and N is a point on the x-axis such that $\mathrm{CVN} \perp x$-axis. E is a point on g such that $\mathrm{CE} \| x$-axis. A and B are the x-intercepts of f.

6.1 Determine the co-ordinates of C , the turning point of f.
6.2 Write down the range of f.
6.3 Calculate the length of AB .
6.4 Determine the equation of g.
6.5 T is a point on f such that D and T are reflections of each other over CVN . Write down the coordinates of T .
6.6 The line EC is a tangent to f at C .
6.6.1 Write down the gradient of this tangent.
6.6.2 Determine the coordinates of E .
6.7 Determine the value of k for which $y=-x+k$ is a tangent to f.

7.1 Calculate the value of a.
7.2 Write down the equation of h^{-1}, the inverse of h, in the form $y=\ldots$
7.3 Write down the domain of h^{-1}.
7.4 Determine the values of x if $h(x) \leq-1$.

Downloaded from Stanmorepfysics.com

QUESTION 8

8.1 ABC traders purchased a truck for R500 000 . The truck depreciates at $8,5 \%$ p.a. on a reducing balance. Determine the value of the truck after 12 years (to the nearest rand).
8.2 Sipho takes a bank loan to pay for his new car. He repays the loan by means of monthly payments of R3300 for a period of 5 years. The repayments start one month after the loan is granted. The interest rate is 16% p.a. compounded monthly.
8.2.1 Calculate the purchase price of the car if Sipho is granted a loan for the full purchase price of the car.
8.2.2 If the trade in value of his old car is R10 000 and he decides to use this amount as deposit, determine the new monthly instalments that Sipho will now make.
8.2.3 Calculate the savings he will make if he pays the deposit of R10 000 .

QUESTION 9

9.1 Determine $f^{\prime}(x)$ from first principles given $f(x)=x^{2}+5 x-6$.
9.2 Determine:
9.2.1 $f^{\prime}(x)$ if $f(x)=3 x(\sqrt{x}-4)$
9.2.2 $\frac{d y}{d x}$ if $y=\frac{x^{3}-4 x}{2-x}$

QUESTION 10

The graph of $f(x)=x^{3}+b x^{2}+c x+d ; a \neq 0$ is sketched below.
$\mathrm{A}(-1 ; 0)$ is an x-intercept. $\mathrm{C}(0 ; 4)$ is a turning point and B is both a local minimum and x - intercept of f.

10.1 Write down the value of d.
10.2 Show that $b=-3$ and $c=0$.

10.3 Determine the equation of the tangent to f at $x=5$.
10.4 For which values of k will $f(x)=k$ have 2 unequal positive roots and 1 negative root simultaneously.
10.5 Determine the coordinates of the local minimum of g if $g(x)=f(-x)+3$.

Downloaded from Stanmorepfysics.com
 QUESTION 11

11.1 Use the information below to draw a graph of the function defined by $f(x)=a x^{3}+b x^{2}+c x+d$.
Indicate the intercepts with the axes as well as the coordinates of the turning points.

- $f(0)=3$ and $f(-3)=0$
- $f^{\prime}(-2)=f^{\prime}(1)=0$
- $f(-2)=5$ and $f(1)=1$
11.2 Use the graph to answer the questions below:
11.2.1 Determine the values of x for which $x . f(x)<0$.
11.2.2 If $g(x)=-f(x)$, write down the coordinates of the local minimum point of g.

QUESTION 12

The word PANDEMIC is an important word used in the COVID - 19 crises in the world today. The letters of this word are randomly arranged to form new arrangements of the letters.
12.1 How many unique arrangements of the letters can be made?
12.2 Determine the number of unique arrangements of the letters that are possible if each arrangement must start with the letter P and end with the letter C.
12.3 Calculate the probability that randomly chosen unique arrangements of the letters will start with the letter P and end with the letter C.

QUESTION 13

Each passenger on ABC Airways flight chose exactly one beverage from tea, coffee or fruit juice. The results are shown in the table below.

	MALE	FEMALE	TOTAL
Tea	20	$\mathbf{4 0}$	60
Coffee	b	c	80
Fruit Juice	d	e	20
TOTAL	60	100	a

13.1 Write down the value of a.
13.2 Determine the probability that a randomly selected passenger is male.
13.3 Given that the event of a passenger choosing coffee is independent of being a male, calculate the value of b.

INFORMATION SHEET: MATHEMATICS

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \quad A=P(1+i)^{n}$
$T_{n}=a+(n-1) d$
$\mathrm{S}_{n}=\frac{n}{2}(2 a+(n-1) d)$
$T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; \quad r \neq 1 \quad S_{\infty}=\frac{a}{1-r} ;-1<r<1$
$F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
$y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta$
$(x-a)^{2}+(y-b)^{2}=r^{2}$
In $\triangle A B C: \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \quad$ area $\triangle A B C=\frac{1}{2} a b \cdot \sin C$
$\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta \quad \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta$
$\cos 2 \alpha=\left\{\begin{array}{l}\cos ^{2} \alpha-\sin ^{2} \alpha \\ 1-2 \sin ^{2} \alpha \\ 2 \cos ^{2} \alpha-1\end{array} \quad \sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha\right.$
$\bar{x}=\frac{\sum f . x}{\sum f} \quad \sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$
$\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})} \quad$ stanorephescom

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

$\hat{y}=a+b x$

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

QUESTION 1

1.1.1	$x=0$ or $x=3$	$\mathrm{A} \checkmark x=0 \quad \mathrm{~A} \checkmark \quad x=3$	(2)
1.1.2	$\begin{aligned} & 5 x^{2}-4 x-2=0 \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(5)(-2)}}{2(5)} \\ & x=-0,35 \quad \text { or } \quad 1,15 \end{aligned}$	$\mathrm{A} \checkmark$ standard form CA \checkmark substitution in correct formula CACA $\checkmark \checkmark$ answers (penalize 1 mark if rounding off is incorrect-once here for entire paper)	(4)
1.1.3	$\begin{aligned} & \sqrt{7+3 x}+2 x=0 \\ & \sqrt{7+3 x}=-2 x \\ & (\sqrt{7+3 x})^{2}=(-2 x)^{2} \\ & 7+3 x=4 x^{2} \\ & 4 x^{2}-3 x-7=0 \\ & (x+1)(4 x-7)=0 \\ & x=-1 \text { or } x=\frac{7}{4} \end{aligned}$ n / a	A \checkmark Isolating surd A \checkmark squaring both sides CA \checkmark standard form CA \checkmark factors CA \checkmark answers and rejecting	(5)
1.1.4	$\begin{aligned} & 3^{x+2}+3^{2-x}=82 \\ & 9.3^{x}+\frac{9}{3^{x}}=82 \\ & 9.3^{2 x}-82.3^{x}+9=0 \\ & \left(9.3^{x}-1\right)\left(3^{x}-9\right)=0 \\ & 3^{x}=\frac{1}{9} \text { or } 3^{x}=9 \\ & 3^{x}=3^{-2} \text { or } 3^{x}=3^{2} \\ & x=-2 \text { or } x=2 \end{aligned}$	A \checkmark Writing as a positive index CA \checkmark Standard form of equation CA \checkmark factors CA \checkmark exponential forms CA \checkmark answers	(5)

NSC Marking Guideline

\begin{tabular}{|c|c|c|c|}
\hline 1.2 \& \[
\begin{aligned}
\& x^{2}-5 x+4 \geq 0 \\
\& (x-1)(x-4) \geq 0 \\
\& x \leq 1 \text { or } x \geq 4
\end{aligned}
\]
 \& \begin{tabular}{l}
\[
\mathrm{A} \sqrt{ } x^{2}-5 x+4 \geq 0
\] \\
A \(\checkmark\) factors CA \(\checkmark\) end points A \(\checkmark\) interval OR \\
If graphical solution is used: AA 2 marks for graph A /CA 2 marks for answer
\end{tabular} \& (4)

(4)

\hline 1.3 \& | $\begin{array}{cc} x y=12 & \rightarrow(1) \\ x-4=y & \rightarrow(2) \end{array}$ |
| :--- |
| Substituting (2) into (1): $\begin{aligned} & x(x-4)=12 \\ & x^{2}-4 x-12=0 \\ & (x+2)(x-6)=0 \\ & x=-2 \text { or } x=6 \\ & y=-6 \text { or } y=2 \end{aligned}$ | \& A \checkmark correct substitution CA \checkmark standard form CA \checkmark factors CA $\checkmark x / y$ - values CA $\checkmark y / x$ values \& (5)

\hline \& \& \& [25]

\hline
\end{tabular}

QUESTION 2

2.1	$\begin{aligned} & T_{p}=3 p-2=1450 \\ & p=484 \end{aligned}$ Between the $484^{\text {th }}$ and $485^{\text {th }}$ terms	A \checkmark equating $p^{\text {th }}$ term to 1450 CA $\checkmark p$ value CA \checkmark answer	(3)
2.2		A $\checkmark a$-value $C A \checkmark b-$ value CA \checkmark Substitution CA \checkmark answer	(4)
			[7]

QUESTION 3

3.1.1	$\mathrm{T}_{n}=8 n+57$	A \checkmark common difference CA \checkmark answer	(2)
3.1.2	$\begin{aligned} & \mathrm{T} \mathrm{~T}_{n}=8 n+57 \\ & \mathrm{~T}_{1000}=8(1000)+57 \\ & \mathrm{~T}_{1000}=8057 \end{aligned}$	CA \checkmark substitution into formula CA \checkmark answer	(2)
3.1.3	$\begin{aligned} & S_{n}=\frac{n}{2}\left[a+T_{n}\right] \\ & S_{1000}=\frac{1000}{2}[65+8057] \\ & S_{1000}=4061000 \end{aligned}$	CA \checkmark correct substitution into sum formula CA \checkmark answer	(2)
3.2	Arithmetic: $5 ; 5+x ; 5+2 x ; \ldots$ Geometric: $5 ; 5 x ; 5 x^{2} ; 5 x^{3} ; \ldots$ Now: $\begin{aligned} & 5 x^{4}=80 \\ & x^{4}=16 \\ & x=-2 \text { or } 2 \end{aligned}$ Sequences are: 5;7;9 or 5; 3;1	A \checkmark Setting up equation A \checkmark dividing by 5 CA $\checkmark x$-values CA \checkmark sequence $\mathrm{CA} \checkmark$ sequence	(5)
			[11]

QUESTION 4

4	$\left.\begin{array}{l} \sum_{p=1}^{5}(4 y+3 p)+\sum_{k=4}^{7} 3 \cdot(2)^{k-1}=\sum_{j=1}^{\infty}\left(\frac{1}{3}\right)^{j-1} \\ 4 y+3+4 y+6+4 y+9+4 y+12+4 y+15 \\ =20 y+45 \end{array} \quad \begin{array}{l} 3.2^{3}+3 \cdot 2^{4}+3 \cdot 2^{5}+3 \cdot 2^{6}=360 \\ S_{\infty}=\frac{a}{1-r} \\ \quad=\frac{1}{1-\frac{1}{3}} \\ \quad=\frac{3}{2} \end{array}\right\} \begin{aligned} & 20 y+45+360=\frac{3}{2} \\ & 20 y=-403,5 \\ & y=-20,175 \end{aligned}$	A $\checkmark 20 y+45$ A $\checkmark 360$ A \checkmark correct substitution into sum to infinity formula $\operatorname{CA} \checkmark \frac{3}{2}$ CA \checkmark equation CA \checkmark simplifying CA \checkmark answer	
			[7]

Mathematios Prunloaded from Stanmóre pfysics.com
NSC Marking Guideline

QUESTION 5

5.1	$x=1$ and $y=2$	$\begin{aligned} & \mathrm{A} \checkmark x=1 \\ & \mathrm{~A} \checkmark y=2 \end{aligned}$	(2)
5.2	$\begin{aligned} & y \text {-intercept }:(0 ; 6) \\ & x-\text { intercept: } \frac{4}{x-1}=2 \\ & x-1=2 \\ & x=3 \\ & (3 ; 0) \end{aligned}$	$\mathrm{A} \checkmark y-$ intercept $\mathrm{A} \checkmark x-1=2$ CA $\checkmark x-$ intercept (co-ordinate form not needed)	(3)
5.3		CA $\sqrt{ } x, y$ intercepts CA \checkmark both asymptotes A \checkmark shape	(3)
			[8]

QUESTION 6

6.1	$\begin{aligned} & f^{\prime}(x)=-2 x+4=0 \quad \text { or } x=-\frac{4}{2(-1)} \\ & x=2 \\ & y=f(2)=-4+8+5=9 \\ & C(2 ; 9) \end{aligned}$	A \checkmark derivative and equal to $0 /$ Substitution into formula CA \checkmark Axis of symmetry value CA \checkmark Maximum value	(3)
6.2	$\mathrm{y} \leq 9$	CA \checkmark answer	(1)
6.3	$\begin{aligned} & -x^{2}+4 x+5=0 \\ & x^{2}-4 x-5=0 \\ & (x+1)(x-5)=0 \\ & x=-1 \text { or } x=5 \\ & \mathrm{AB}=6 \text { units } \end{aligned}$	A \checkmark standard form CA \checkmark factors CA $\checkmark x$-values CA \checkmark answer	(4)
6.4	$\begin{aligned} & m=-1 \text { and } c=5 \\ & y=-x+5 \end{aligned}$	CACA $\checkmark \checkmark$ answer	(2)
6.5	$T(4 ; 5)$	CACA $\checkmark \checkmark$ answer	(2)
6.6.1	$m=0$	A \checkmark answer	(1)
6.6.2	$\begin{aligned} & 9=-x+5 \\ & x=-4 \\ & E(-4 ; 9) \end{aligned}$	CA \checkmark Equating equation to 9 CA $\checkmark x$-value	(2)
6.7	$\begin{aligned} & f^{\prime}(x)=-2 x+4=-1 \\ & x=\frac{5}{2} \\ & y=-\left(\frac{5}{2}\right)^{2}+4\left(\frac{5}{2}\right)+5=\frac{35}{4} \\ & \frac{35}{4}=-\frac{5}{2}+k \\ & k=\frac{45}{4} \end{aligned}$	A \checkmark Derivative equal to -1 CA $\checkmark x$-value CA $\checkmark y$-value CA \checkmark substitution into equation of line CA \checkmark answer	(5)
			[20]

QUESTION 7

7.1	$\begin{aligned} & y=\log _{a} x \\ & -1=\log _{a} 0,5 \\ & a^{-1}=0,5=2^{-1} \\ & a=2 \end{aligned}$	A \checkmark substitution of point P CA \checkmark Writing in exponential form CA \checkmark answer	(3)
7.2	$y=2^{x}$	CACA $\checkmark \checkmark$	(2)
7.3	$x \in R$ or $x \in(-\infty ; \infty)$	A \checkmark answer	(1)
7.4	$\begin{aligned} & \log _{2} x=-1 \\ & x=2^{-1}=\frac{1}{2} \\ & 0<x \leq \frac{1}{2} \end{aligned}$	CA \checkmark end points A \checkmark interval Can be solved by \log inequalities. Answer Only - Full marks	(2)
		$\geq+$	[8]

QUESTION 8

8.1	$\begin{aligned} & A=P(1-i)^{n} \\ & =500000(1-8,5 \%)^{12} \\ & =R 172196 \end{aligned}$	$A \checkmark$ value of n A \checkmark value of i CA \checkmark answer	(3)
8.2.1	$\begin{aligned} P & =\frac{x\left[1-(1+i)^{-n}\right]}{i} \\ & =\frac{3300\left[1-\left(1+\frac{16 \%}{12}\right)^{-60}\right]}{\frac{16 \%}{12}} \\ & =R 135701,63 \end{aligned}$	A \checkmark value of n A \checkmark value of i CA \checkmark Substitution into formula CA \checkmark answer	(4)
8.2.2	$\begin{aligned} & P=\frac{x\left[1-(1+i)^{-n}\right]}{i} \\ & 125701,6304=\frac{x\left[1-\left(1+\frac{16 \%}{12}\right)^{-60}\right]}{\frac{16 \%}{12}} \\ & x=R 3056,82 \end{aligned}$	A $\checkmark \mathrm{P}$ value CA \checkmark substitution into formula CA \checkmark answer	(3)
8.2.3	No. Deposit: $60 \times \mathrm{R} 3300=\mathrm{R} 198$ 000,00 With Deposit: R10 $000+60 \times$ R3056,82 $=\mathrm{R} 193409,20$ Savings: R4590,80	$\begin{aligned} & \mathrm{A} \checkmark \text { R198 } 000 \\ & \text { A } \checkmark \checkmark 193 \text { 409,20 } \\ & \text { CA } \checkmark \text { answer } \end{aligned}$	(4)
			[14]

NSC Marking Guideline
QUESTION 9(penalize 1 mark once for incorrect notation in this question)

QUESTION 10

10.1	$d=4$	A \checkmark Answer	(1)
10.2	$\begin{aligned} & 0=-1+b-c+4 \\ & b-c=-3 \\ & f^{\prime}(x)=3 x^{2}+2 b x+c \\ & 0=3(0)^{2}+2 b(0)+c \\ & c=0 \\ & b=-3 \end{aligned}$	A \checkmark substitution of point $(-1 ; 0)$ A \checkmark equation A \checkmark derivative A \checkmark substitution of point $(-1 ; 0)$ into derivative	(4)
10.3	$\begin{aligned} & f(x)=x^{3}-3 x^{2}+4 \\ & f^{\prime}(x)=3 x^{2}-6 x \\ & f^{\prime}(5)=3(5)^{2}-6(5)=45 \\ & f(5)=(5)^{3}-3(5)^{2}+4=54 \\ & 54=45(5)+c \\ & c=-171 \\ & y=45 x-171 \end{aligned}$	A \checkmark gradient value of tangent A $\checkmark y$-value of tangent CA $\checkmark c$-value CA \checkmark answer	(4)
10.4	$0<k<4$	AA \checkmark answer	(2)
10.5	$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x=0 \\ & 3 x(x-2)=0 \\ & x=0 \text { or } x=2 \\ & y=4 \text { or } y=0 \\ & \mathrm{~B}(2 ; 0) \\ & \mathrm{B}^{\prime}(-2 ; 3) \end{aligned}$	CA $\checkmark x$-values CA $\checkmark y$-values CA $\checkmark x$ - value CA $\checkmark y$-value	(4)
		\square	[15]

QUESTION 11

11.1		A \checkmark Local Maximum point A \checkmark Local Minimum point A $\checkmark x$-intercept A $\checkmark y$-intercept A \checkmark shape	(5)
11.2.1	$-3<x<0$	CACA $\checkmark \checkmark$	(2)
11.2.2	$(-2 ;-5)$	CACA $\checkmark \checkmark$	(2)
			[9]

Mathematios Prtuloaded from Stanmdo epfysics.com NSC Marking Guideline

QUESTION 12

12.1	$8!$ $=40320$	$\mathrm{A} \checkmark 8!$ $\mathrm{A} \checkmark 40320$	(2)
12.2	$1 \times 6!\times 1$ 720	$\mathrm{A} \checkmark \checkmark 1 \times 6!\times 1$ $\mathrm{~A} \checkmark 720$	
12.3	Probability of a word starting with P and ending with C 720 40320,$\frac{1}{56}=1,79 \%=0,0179$	CA \checkmark Numerator $\mathrm{CA} \checkmark$ denominator $\frac{720}{40320}$ or $\frac{1}{56}$ or 0,0179 or $1,79 \%$	(2)
			[7]

QUESTION 13

13.1	160	$\mathrm{~A} \checkmark$ answer	(1)
13.2	$\mathrm{P}($ Male $)=\frac{60}{160}=\frac{3}{8}=0,375=37,5 \%$	$\mathrm{AA} \checkmark \checkmark \frac{60}{160}$ or $\frac{3}{8}$ or 0,375 or $37,5 \%$	(2)
13.3	$\mathrm{P}($ Male choosing coffee) $=\mathrm{P}($ Male $) \times \mathrm{P}$ (coffee) $\frac{b}{160}=\frac{60}{160} \times \frac{80}{160}$ $\frac{b}{160}=\frac{3}{16}$ $b=30$	$\mathrm{~A} \checkmark$ Condition for independent events	
	$\mathrm{AA} \checkmark \checkmark$ Substitution into equation		

Total: 150

