

education

Department of Education FREE STATE PROVINCE

GRADE 12

MATHEMATICS P2

JUNE EXAMINATION
JUNE 2022

Stanmorephysics.com

MARKS: 150

TIME: 3 hours

This question paper consists of 11 pages

Copyright reserved Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 8 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used to determine the answer.
- 4. An approved calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 5. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 6. An INFORMATION SHEET with formulae is included at the end of the question paper.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write neatly and legibly.
- 9. Answers only will NOT necessarily be awarded full marks.

Copy right reserved Please turn over

The table below shows the distance (in kilometers) travelled daily by a sales representative for 21 working days in a certain month.

		1000						
	131	132	140	140	141	144	146	
1	1947ephy	sics ₁₄₉ m	150	151	159	167	169	
	169	172	174	175	178	187	189	

- Calculate the mean distance travelled by the sales representative. 1.1
- 1.2 (4)
- Use the scaled line in your ANSWER BOOK to draw a box and whisker diagram for this set of data. 1.3 (2)
- Comment on the skewness of the data. 1.4 (1)
- Calculate the standard deviation of the distance travelled. 1.5 (2)
- The sales representative discovered that his odometer was faulty. The 1.6 actual reading on each of the 21 days was p km more than that which Actual mean

 J.2 Actual deviation was indicated. Write down in terms of p (if applicable), the
 - (1)
 - (1)

[13]

In the diagram below (not drawn to scale) A(–8; 6), B(8; 10), C and D(–2; 0) are the vertices of a trapezium having BC \parallel AD. T is the midpoint of DB. From B, the straight line drawn parallel to the y-axis cuts DC at F(8; $3\frac{1}{3}$) and the x-axis at M.

- 2.1 Calculate the gradient of AD. (2)
- 2.2 Determine the equation of BC in the form y = mx + c. (3)
- 2.3 Prove that BD \perp AD. (3)
- 2.4 Calculate the size of $B\widehat{D}M$. (2)
- 2.5 If it is given that TC || DM and points T and C are symmetrical about line BM, calculate the coordinates of C.
- 2.6 Calculate the area of $\triangle BDF$. (5)

[18]

(3)

In the diagram, N is the center of the circle. M (-3; -2) and P (1; 4) are points on the circle. MNP is the diameter of the circle. Tangents drawn to circle from point R, outside the circle, meet the circle at S and M respectively.

- 3.1 Determine the coordinates of N. (3)
- 3.2 Determine the equation of the circle in the form $(x-a)^2 + (y-b)^2 = r^2$ (4)
- 3.3 Determine the equation of the tangent RM in the form y = m x + c (5)
- 3.4 If it is given that the line joining S to M is perpendicular to the x-axis, determine the coordinates of S. (2)
- 3.5 Determine the coordinates of R, the common external point from which both tangents to the circle are drawn. (4)
- 3.6 Calculate the area of RSNM. (4)

5

[22]

Stanmorephysics.com

4.1 Simplify to a single trigonometric ratio:

$$\frac{\tan(180^{0} + x).\cos(360^{0} - x)}{\sin(x - 180^{0})\cos(90^{0} + x) + \cos(720^{0} + x).\cos(-x)}$$
(6)

4.2 Without using a calculator, determine the value of:

$$\frac{\sin^2 35^0 - \cos^2 35^0}{4\sin 10^0 \cdot \cos 10^0} \tag{5}$$

4.3 If $\sin 35^0 = k$, determine the following in terms of k.

$$4.3.1 \cos 55^{\circ}$$
 (3)

$$4.3.2 \sin 145^{\circ}$$
 (2)

4.3.3
$$\sin 70^{\circ}$$
 (3)

$$4.3.4 \cos 80^{\circ}$$
 (3)

4.4 Prove the identity:

$$\frac{\cos 2x + \cos^2 x + 3\sin^2 x}{2 - 2\sin^2 x} = \frac{1}{\cos^2 x}$$
 (5)

4.5 If $\sin x - \cos x = \frac{3}{4}$, calculate the value of $\sin 2x$ WITHOUT using a calculator. (5)

[32]

Given the equation: $sin(x + 60^\circ) + 2cos x = 0$

5.1 Show that the equation can be rewritten as
$$tan x = -4 - \sqrt{3}$$
 (4)

5.2 Determine the solutions of the equation
$$\sin(x + 60^\circ) + 2\cos x = 0$$
 (2) in the interval $x \in [-120^\circ; 180^\circ]$

5.3 In the diagram below, the graph of $f(x) = -2\cos x$ is drawn for $-120^{\circ} \le x \le 240^{\circ}$.

5.3.1 Draw the graph of $g(x) = \sin(x + 60^\circ)$ for $-120^\circ \le x \le 240^\circ$ on the grid provided in the ANSWER BOOK.

5.3.2 Determine the values of x in the interval $-120 \le x \le 240^\circ$ for which $\sin(x + 60^\circ) + 2\cos x > 0$.

(3)

(3)

[12]

From point A an observer spots two boats, B and C, at anchor. The angle of depression of boat B from A is θ . D is a point directly below A and is on the same horizontal plane as B and C. BD = 64m, AB = 81m and AC = 87m.

- 6.1 Calculate the size of θ to the nearest degree. (3)
- 6.2 If it is given that $\widehat{BAC} = 82.6^{\circ}$, Calculate BC, the distance between the boats. (3)
- 6.3 If $\widehat{BDC} = 110^{\circ}$, Calculate the size of \widehat{DCB} . (3)

7.1 Complete the following:

7.2 In the diagram, ST and VT are tangents to the circle at S and V respectively. R is a point on the circle and W is point on chord RS such that WT is parallel to RV. SV and WV are drawn. WT intersects SV at K. Let $\hat{S}_2 = x$ and $W\hat{V}T = 77^\circ$

- 7.2.1 Write down, with reasons, THREE other angles EACH equals to x. (6)
- 7 2.2 WSTV is a cyclic quadrilateral. Determine with reasons WST. (2)
- 7.2.3 Prove, with reasons, that:

(a)
$$\triangle WRV$$
 is isosceles (4)

(b)
$$\Delta WRV \parallel \Delta TSV$$
 (3)

(c)
$$\frac{RV}{SR} = \frac{KV}{TS}$$
 (4)

[21]

8.1 In the diagram, point D and E lie on side AB and AC respectively of ΔABC such that DE \parallel BC. Use Euclidean Geometry methods to prove theorem which states that $\frac{AD}{DB} = \frac{AE}{EC}$.

8.2 In the diagram, ADE is a triangle having BC \parallel ED and AE \parallel GF. It is also given that AB:BE = 1:3 and AC = 3 units, EF = 6 units, FD = 3 units and CG = x units

Calculate, giving reasons:

8.2.2 The value of
$$x$$
 (4)

8.3.4 The value of
$$\frac{\text{area } \triangle ABC}{\text{area } \triangle GED}$$
. (5)

[23]

TOTAL 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1-ni)$$
 $A = P(1-i)^n$ $A = P(1+i)^n$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 ; $r \ne 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$$

$$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}ab.sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

JUNE 2022

MARKING GUIDELINE/NASIENRIGLYN

MARKS: 150 PUNTE: 150

These marking guidelines consists of 15 pages. Hierdie nasienriglyne bestaan uit 15 bladsye.

1.1	$\bar{x} = \frac{3310}{21}$	$\checkmark \frac{3310}{21}$
	= 157,62 Answer only : Full marks	✓ answer (2)
1.2	(131; 142,5; 151; 173; 189)	✓ 131and/ en 189 ✓ 142,5 ✓ 173 ✓ 151
1.3	131 142,5 151 173 189 120 130 140 150 160 170 180 190 200	✓box ✓whisker (2)
1.4	positively skewed OR skewed to the right	✓answer (1)
1.5	$\sigma = 17,27$	✓ √ answer (2)
1.6.1	$\bar{x} = 157,62 + p$	✓ answer (1)
1.6.2	$\sigma = 17,27$	✓ answer (1) [13]

2.1	$m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{0 - 6}{-2 + 8}$ $= \frac{-6}{6}$ Stormore physics com	✓ substitution into correct formulae
	= -1	✓ answer (2)
2.2	$m_{BC} = -1$ [BC AD] y = -x + c 10 = -8 + c c = 18 $y_{BC} = -x + 18$ OR $m_{BC} = -1$ [BC AD] $y - y_1 = m(x - x_1)$ y - 10 = -(x - 8) y = -x + 18	✓ gradient ✓ substitute m and (8; 10) ✓ equation ✓ gradient ✓ substitute m and (8; 10) ✓ equation (3)

2.3	$m_{BD} = \frac{y_2 - y_1}{x_2 - x_1}$	✓ substitution
		✓ gradient
	$=\frac{10-0}{8+2}$	graurot
	= 1	$egin{array}{c} oldsymbol{phi} m_{BD}.m_{AD} \end{array}$
	$m_{BD}.m_{AD} = 1 \times -1 = -1$	= 1x - 1 = -1
		(3)
2.4	$ ∴ DB ⊥ AD tan BDM = m_{BD} = 1$	✓ tan B \widehat{D} M = m_{BD}
	$\therefore B\widehat{D}M = 45^{\circ}$	✓answer
	OR	(2)
	$\sin B\widehat{D}M = \frac{BM}{BD} = \frac{10}{10\sqrt{2}} = \frac{1}{\sqrt{2}}$	✓ $\sin B\widehat{D}M = \frac{1}{\sqrt{2}}$ ✓ answer
	$\therefore B\widehat{D}M = 45^{\circ}$	(2)
	OR	
	$\cos B\widehat{D}M = \frac{10}{10\sqrt{2}} = \frac{1}{\sqrt{2}}$	
	$\therefore B\widehat{D}M = 45^{\circ}$	$\checkmark \cos B\widehat{D}M = \frac{1}{\sqrt{2}}$
		\checkmark answer
		(2)
2.5	$T(x; y) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	✓T (3;5)
	$=\left(\frac{-2+8}{2};\frac{0+10}{2}\right)$	
	= (3;5)	
	T symmetrical about BM ∴ distance of B to BM =5 units = distance from BM to C	
	. C (12 · E)	✓value of x ✓value of y
	∴ C (13; 5)	(3)
2.6	Area $\triangle BDF = Area \triangle BDM - Area \triangle DFM$	✓ formula/method ✓ 10(DM)
	$=\frac{1}{2}(10)(10)-\frac{1}{2}(10)\left(\frac{10}{3}\right)$	✓10(BM)
		$\sqrt{\frac{10}{3}}$
	$=\frac{100}{3}$	
	= 33,3 square units	✓ answer (5)
	OR $\triangle ARDE = \frac{1}{2}REDM$	
	Area $\triangle BDF = \frac{1}{2} BF. DM$	✓ formula/method
	$=\frac{1}{2}\left(\frac{20}{3}\right)(10)$	\checkmark \checkmark BF $\left(\frac{20}{3}\right)$
	_ ` ` ` ` `	, - ,

$=\frac{100}{3}$	✓DM(10)
= 33,3 square units	✓answer (5) [18]

3.1	$N\left(\frac{1+(-3)}{2}; \frac{4+(-2)}{2}\right)$ N(-1; 1) is the center of the circle	✓substitution of M & P ✓x- value of N ✓y- value of N (3)
3.2	$r = \sqrt{(1-1)^2 + (4-1)^2}$ $r = \sqrt{13} = \text{radius}$ $(x+1)^2 + (y-1)^2 = 13$ OR	✓ substitution of N & P ✓ $r = \sqrt{13}$ ✓ LHS of equation ✓ RHS of equation (4)
	$r = \sqrt{(-3-1)^2 + (-2-1)^2}$ $r = \sqrt{13} = \text{radius}$ $(x+1)^2 + (y-1)^2 = 13$	✓ substitution of N & M ✓ $r = \sqrt{13}$ ✓ LHS of equation ✓ RHS of equation (4)

	OR $(x + 1)^2 + (y - 1)^2 = r^2 \text{ sub } (1;4)$ $(1+1)^2 + (4-1)^2 = r^2$ $13 = r^2$ $(x + 1)^2 + (y - 1)^2 = 13$	✓ substitution of point ✓ $r = \sqrt{13}$ ✓ LHS of equation ✓ RHS of equation (4)
3.3	$m_{\rm NM} \times m_{\rm MR} = -1$ [radius \perp tangent] $m_{\rm NM} = \frac{1 - (-2)}{-1 - (-3)}$ OR $m_{\rm PM} = \frac{4 - (-2)}{1 - (-3)}$ $= \frac{3}{2}$ $= \frac{3}{2}$	✓ correct substitution $\checkmark m_{\rm NM}$
	$m_{MR} = -\frac{2}{3}$ $y - y_1 = -\frac{2}{3}(x - x_1) \text{ OR} \qquad y = -\frac{2}{3}x + c$ $y + 2 = -\frac{2}{3}(x + 3) \qquad -2 = -\frac{2}{3}(-3) + c$ $y = -\frac{2}{3}x - 4$	✓ $m_{\rm MR}$ ✓ substitution of $m_{\rm MR}$ & (-3; -2) ✓ equation (5)
3.4	Symmetry of a kite: S(-3; 4)	✓ x-value of S ✓ y-value of S
	OR $P\hat{S}M = 90^{\circ}$ [\angle in semi circle] $PS \perp SM$ $\therefore S(-3; 4)$	(2) ✓ x-value of S ✓ y-value of S (2)
	OR $(NS)^{2} = (radius)^{2}$ $(-3+1)^{2} + (y-1)^{2} = 13$ $(y-1)^{2} = 9$ $y-1 = \pm 3$ $y = 4 \text{ or } y \neq -2$ $\therefore S(-3;4)$	✓ x-value of S ✓ y-value of S Starmorephysics.com (2)
3.5	$(SR)^2 = (RM)^2$ tang from common pt $(x+3)^2 + (y-4)^2 = (x+3)^2 + (y+2)^2$ $y^2 - 8y + 16 = y^2 + 4y + 4$ -12y = 12 y = 1	✓ equating lengths ✓ simplification
	$\frac{2}{3}x = -4 - 1 \text{ OR } 1 = -\frac{2}{3}x - 4$ $x = -\frac{15}{2} \qquad x = -7\frac{1}{2}$ $\therefore R\left(-7\frac{1}{2}; 1\right)$	✓ x-value of R✓ y-value of R

	OR		(4)
	$R(x;1)$ [RN is a horizontal line] $\therefore 1 = -\frac{2}{3}x - 4$ $5 = -\frac{2}{3}x$ $x = -\frac{15}{2}$ $\therefore R\left(-\frac{15}{2};1\right)$	$\checkmark y_R = 1$	(4)
	OR		
	$m_{\text{NS}} = \frac{1-4}{-1+3} = -\frac{3}{2}$ $\therefore m_{\text{RS}} = \frac{2}{3}$		
	$y - 4 = \frac{2}{3}(x+3)$ $y = \frac{2}{3}x + 6$ $-\frac{2}{3}x - 4 = \frac{2}{3}x + 6$	$✓ y = \frac{2}{3}x + 6$ ✓ equating $✓ x\text{-value of R}$	
	$x = -7\frac{1}{2}$ $y = \frac{2}{3}\left(-\frac{15}{2}\right) + 6 = 1$ $\therefore R\left(-\frac{15}{2}; 1\right)$	(x < −4,6) ✓ y- value of R	(4)
3.6	RS = $\sqrt{(-3+7,5)^2 + (4-1)^2} = \frac{3\sqrt{13}}{2} = 5,41$ OR	✓ RS OR RM	
	RM= $\sqrt{(-3+7.5)^2 + (-2-1)^2} \frac{3\sqrt{13}}{2} = 5,41$ Area of RSNM = 2area of Δ RSN = $2\left(\frac{1}{2}\right)\sqrt{13}\left(\frac{3\sqrt{13}}{2}\right)$ = $\frac{39}{2}$ or 19,5 square units	✓ method $\checkmark\sqrt{13} \ and \ \left(\frac{3\sqrt{13}}{2}\right)$ ✓ answer	(4)
	SM = 6 Area of RSNM = Area of \triangle SMN + Area of \triangle RSM = $\frac{1}{2}(6)(2) + \frac{1}{2}(6)(4\frac{1}{2})$ = 6 +13,5 = 19,5	✓ method ✓ MS = 6 ✓ RN = 6,5 ✓ answer	(4)
	Area kite = $\frac{1}{2}$ RN. MS		
			[22]

$= \frac{1}{2} (6,5)(6)$ = 19,5 square units	
--	--

4.1	$\frac{\tan(180^{0} + x) \cdot \cos(360^{0} - x)}{\sin(x - 180^{0}) \cos(90^{0} + x) + \cos(720^{0} + x) \cdot \cos(-x)}$ $= \frac{\tan x \cos x}{-\sin x \cdot (-\sin x) + \cos x \cos x}$ $= \frac{\frac{\sin x}{\cos x} \cdot \cos x}{\sin^{2}x + \cos^{2}x}$ $= \sin x$	✓ both $\tan x \cos x$ ✓ both $-\sin x$, $and - \sin x$ ✓ both $\cos x \cos x$ ✓ $\frac{\sin x}{\cos x}$ ✓ $\sin^2 x + \cos^2 x = 1$ ✓ answer (6)
4.2	$= \frac{\sin^2 35^0 - \cos^2 35^0}{4\sin 10^0 \cdot \cos 10^0}$ $= \frac{-(\cos^2 35^0 - \sin^2 35^0)}{2(2\sin 10^0 \cdot \cos 10^0)}$ $= \frac{-\cos 70^0}{2\sin 20^0}$ $= \frac{-\sin 20^0}{2\sin 20^0}$ $= \frac{-1}{2}$	$\checkmark - (\cos^2 - \sin^2 35^0)$ $\checkmark - \cos 70^0$ $\checkmark 2\sin 20^0$ $\checkmark \text{ cofunction}$ $\checkmark \text{ answer} \qquad (5)$

4.3.2	$sin 145^{0}$ = $sin (90^{0} + 55^{0}) OR sin (180^{0} - 35^{0})$ = $cos 55^{0}$ = $sin 35^{\circ}$ = k = k	✓ $\sin(90^{0} + 55^{0})$ or $\sin(180^{0} - 35^{0})$ ✓ answer (2)
4.3.3	$\sin 70^0 = \sin 2(35)^0$	
	$= 2\sin 35^{\circ}.\cos 35^{\circ}$	✓changing a double angle
	$=2.k.\sqrt{1-k^2}$	$k\checkmark\sqrt{1-k^2}\checkmark\tag{3}$

4.3.4	$\cos 80^0 = \cos(45^0 + 35^0)$	$\sqrt{\cos(45^0 + 35^0)}$
	$= \cos 45^{\circ} \cdot \cos 35^{\circ} - \sin 45^{\circ} \cdot \sin 35^{\circ}$	√expansion
	$= \frac{\sqrt{2}}{2} \cdot \sqrt{1 - k^2} - \frac{\sqrt{2}}{2} \cdot k$	Stanmorephysics.com
	$=\frac{\sqrt{2}}{2}(\sqrt{1-k^2}-k)$ OR	
	$=\frac{\sqrt{2-2k^2}-\sqrt{2}k}{2}$	✓answer (3)
4.4	LHS $= \frac{\cos 2x + \cos^2 x + 3\sin^2 x}{2 - 2\sin^2 x}$	
	$= \frac{\cos^2 x - \sin^2 x + \cos^2 x + 3\sin^2 x}{2(1 - \sin^2 x)}$	
	$=\frac{2\cos^2x + 2\sin^2x}{2\cos^2x}$	$\begin{array}{l} \checkmark 2\cos^2 x + 2\sin^2 x \\ \checkmark \cos^2 x \end{array}$
	$=\frac{2(1)}{2\cos^2}$	
	$=\frac{1}{\cos^2}$	✓answer
	∴ LHS =RHS	(5)
4.5	$(\sin x - \cos x)^2 = \left(\frac{3}{4}\right)^2$	✓ squaring both sides
	$\sin^2 x - 2\sin x \cos x + \cos^2 x = \left(\frac{9}{16}\right)$	✓expanding LHS
	$1 - 2\sin x \cos x = \left(\frac{9}{16}\right)$	✓using identity
	$2\sin x \cos x = \frac{7}{16}$	✓ simplifying
	$\therefore \sin 2x = \frac{7}{16}$	✓ answer (5) [32]

5.1	$sin(x+60^\circ) + 2cosx = 0$	
0.1	$\sin x \cos 60^{\circ} + \cos x \sin 60^{\circ} + 2\cos x = 0$	✓ expansion
	$\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x + 2\cos x = 0$ $\frac{1}{2}\sin x = -2\cos x - \frac{\sqrt{3}}{2}\cos xA$	✓ special angle values
	$\sin x = -4\cos x - \sqrt{3}\cos x$ $\sin x = \cos x \left(-4 - \sqrt{3}\right)$ $\frac{\sin x}{\cos x} = \frac{\cos x \left(-4 - \sqrt{3}\right)}{\cos x}$	✓ simplify $\checkmark cosx(-4 - \sqrt{3})$ (4)
	$\tan x = -4 - \sqrt{3}$	
5.2	$tan x = -4 - \sqrt{3}$ $tan x = -(4 + \sqrt{3})$ $ref \angle = 80,10^{\circ}$ $x = -80,1^{\circ} \text{ or } 99,9^{\circ}$	✓ 99,90° ✓ -80,1°
5.3.1	2 2 1 1 1 20° 180° 240° x 240°	✓(30°,1) or (210°;-1) ✓(-60°,0°) or (120°;0) ✓ shape
		(3)
5.3.2		✓-80,10° ✓99,99° ✓notation
		(3)
		[12]

6.1	ABD =θ [alternate ∠s; line]	✓ ABD =θ [alternate ∠s; line] ✓ substitution into correct ratio
	$\cos\theta = \frac{BD}{AB} = \frac{64}{81}$	✓answer(to the nearest degree)
	$\theta = 38^{\circ}$	(3)
	OR	✓ ABD =θ [alternate ∠s; line] ✓ correct trig ratio
	ABD =θ [alternate ∠s; line]	✓ answer(to the nearest degree)
	$\sin B\widehat{A}D = \frac{61}{81}$	(3)
	$\theta = 38^{\circ}$	
6.2	$BC^{2} = AB^{2} + AC^{2} - 2(AB)(AC)\cos B\widehat{A}C$ = 81 ² + 87 ² - 2(81)(87)\cos 82,6°	✓ use cosine rule ✓ correct substitution into cosine
	= 12314,754 = 110.07m	rule ✓answer
	= 110,97m	(3)
6.3	$\frac{\sin D\hat{C}B}{BD} = \frac{\sin B\hat{D}C}{BC}$	✓ use sine rule
	$\sin D\hat{C}B = \frac{64.\sin 110^{\circ}}{110,97^{\circ}}$	✓substitution
	$\therefore D\hat{C}B = 32,82^{0}$	✓answer
		(3) [9]

7.1.1	equal to the angle in the alternate segment./die hoek in die teenoorstaande sirkel segment	✓ answer (1)
7.1.2	equal angels at the circumference/ gelyke hoeke by die omtrek	✓ answer
7.2.1	$\hat{V}_3 = x$ [tan from same point/ raaklyne vanaf dieslfde pt] $\hat{R} = x$ [tan chord theorem /raaklyn koordstelling] $\hat{W}_3 = x$ [corresp $\angle s/ooreenkomstige \angle$; WT RV]	(1) ✓S ✓R ✓S ✓R ✓S ✓R (6)
7.2.2	WVT = 77° [given] WST = 103° opp ∠s of cyclic quad supplementary	✓ WŜT = 103° ✓ R (2)
7.2.3	a) $\hat{W}_2 = \hat{S}_2 = x$ [$\angle s$ in the same segment/ $\angle e$ in dies segment] $\hat{V}_1 = \hat{W}_2 = x$ [alt $\angle s$ / verwisselende $\angle e$:WT RV] But $\hat{R} = x$ [proved in 7.2.1] $\therefore \hat{R} = \hat{V}_1 = x$ \therefore WR = WV [sides opp equal $\angle s$ /sye teenoor gelyke $\angle e$]	✓S/R ✓S/R ✓S ✓R
	b) In Δ WRV and and/ $en \Delta$ TSV $\hat{R} = \hat{S}_2 = x$ [proved OR tan chord theorem] $\hat{V}_1 = \hat{V}_3 = x$ [proved] $\therefore \Delta$ WRV Δ TSV [\angle , \angle , \angle]	(4) ✓S/R ✓S ✓AAA (3)
	c) $\frac{RV}{SV} = \frac{WR}{TS} [\Delta WRY \Delta TSV]$ $\therefore WR \times SV = RV \times TS$	√S
	$\frac{WR}{SR} = \frac{KV}{SV} \text{ [prop theorem/ eweredigheidstelling: WT RV}$ $\therefore WR \times SV = KV \times SR$ $\therefore RV \times TS = KV \times SR \text{ (both equal to WR} \times SV)}$ $\therefore \frac{RV}{SR} = \frac{KV}{TS}$	✓S/R ✓ ✓S (4)
	OR In $\triangle RVS$ and $\triangle VKT$ SVR = K ₄ [alt angles, WT RV] SRV = V ₃ [proven] In $\triangle RVS$ $\triangle VKT$ [AAA] $\therefore \frac{RV}{SR} = \frac{KT}{VT}$ But VT = ST [tang from same point] $\therefore \frac{RV}{SR} = \frac{KV}{TS}$	✓ identifying correct triangles ✓ proving ✓ correct ratio ✓ S
	SIX 13	[21]

8.2.3	In ΔABC and ΔAED:	
	\hat{A} is common	$\checkmark \hat{A}$ is common
	$A\hat{B}C = \hat{E}$ (corres \angle s; BC ED)	$\checkmark A\widehat{B}C = \widehat{E} \text{ (S/R)}$
	$A\hat{C}B = \hat{D}$ (corres \angle s; BC ED)	$\checkmark A\hat{C}B = \widehat{D}$ (S/R) or
	$\Delta ABC \Delta AED(\angle; \angle; \angle)$	(∠; ∠; ∠)
	BC AC	
	$ \frac{BC}{ED} = \frac{AC}{AD} $ $ BC = 3 $	
	$\frac{BC}{C} = \frac{3}{C}$	
	$\frac{1}{9} = \frac{1}{12}$	$\checkmark \frac{BC}{ED} = \frac{AC}{AD}$
	$BC = 2\frac{1}{4}$ units	ED AD
	•	
		√answer
		(5)
8.2.4	$area AARC = \frac{1}{2}AC.BC.sinA\hat{C}B$	✓ use of correct area
	$\frac{d \operatorname{CED}}{d \operatorname{CED}} = \frac{2^{1-(1-\alpha)} \operatorname{CED}}{1}$	rule ΔABC
	$\frac{area \Delta ABC}{area \Delta GFD} = \frac{\frac{1}{2}AC.BC.sinA\hat{C}B}{\frac{1}{2}GD.FDsin\hat{D}}$	✓ use of correct area
	$1_{(2)(2)}^{2}1_{\text{sim}\widehat{\Omega}}$	rule ΔGFD
	$=\frac{\overline{2}(3)(2\overline{4})SUD}{1}$	✓ substitution of values
	$\frac{1}{3}(4)(3)sin\widehat{D}$	$\checkmark sinA\hat{C}B = sin\hat{D}$
	$=\frac{\frac{1}{2}GD.FDsin\widehat{D}}{\frac{1}{2}(3)(2\frac{1}{4})sin\widehat{D}}$ $=\frac{\frac{9}{12}(4)(3)sin\widehat{D}}{\frac{1}{2}(4)(3)sin\widehat{D}}$	✓ answer
	$=\frac{1}{16}$	(5)
		[23]

TOTAL 150

