

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

COMMON TEST

JUNE 2022

Stanmorephysics.com

MARKS: 150

3 hours TIME:

This question paper consists of 9 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of **10** questions.
- 2. Read the questions carefully.
- 3. Answer ALL the questions.
- 4. Number your answers exactly as the questions are numbered.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining 5. your answers.
- Answers only will NOT necessarily be awarded full marks. 6.
- You may use an approved scientific calculator (non-programmable and non-graphical), 7. unless stated otherwise.
- If necessary, round off answers correct to TWO decimal places, unless stated otherwise. 8.
- Diagrams are NOT necessarily drawn to scale. Write neatly and legibly. 9.
- 10.

nmorephysi

1.1 Solve for x:

> 1.1.15x(3x-2)=0(2)

1.1.2
$$2x^2 + 5x = 9$$
 (correct to TWO decimal places) (4)

1.1.3
$$\sqrt{16a^2 + x^2} - 5a = 0$$
 (5)

1.1.4
$$\frac{-4}{(x-1)(x-5)} < 0$$
 (4)

1.2 Solve for x and y simultaneously if:

$$x - y = 3$$
 and $x^2 - 2y^2 - 7 = xy$ (6)

Simplify fully, without the use of a calculator: 1.3

0

Illtaneously if:

$$x - y = 3$$
 and $x^2 - 2y^2 - 7 = xy$

(6)

the use of a calculator:

$$\frac{\sqrt{m^{2022} - m^{2020}}}{\sqrt{25m^{2024} - 25m^{2022}}}$$
(4)

[25]

QUESTION 2

Given the quadratic number pattern whose terms are: 4;14;30;52; ... respectively.

- Write down the 7th and 8th terms if the pattern continues. 2.1 (2)
- 2.2 Determine the n^{th} term of the quadratic pattern. (4)
- 2.3 Determine the term in the sequence that has a value of 8164. (5)[11]

Copyright Reserved

In an arithmetic series, the first term is 'a' and the common difference is 'd'.

Prove that the sum to n terms of the series is given by:

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 (4)

- Calculate the sum of the arithmetic series given: 24+36+48+60+... to 64 terms.
- 3.3 The common difference of an arithmetic sequence is 4 and the common ratio of a geometric sequence is 4. A new sequence is formed by adding the corresponding terms of the arithmetic and the geometric sequences.

The first and second terms of the new sequence are 8 and 21 respectively.

- 3.3.1 Calculate the third term of the new sequence. (8)
- 3.3.2 Write down an expression for the nth term of the new sequence. (5) [20]

QUESTION 4

- 4.1 Tebego invests R120 000 for 5 years at 9,8 % p.a. compounded monthly. Shante invests R120 000 for 5 years at 12,3 % p.a. compounded guarterly.
 - 4.1.1 Determine the amount earned by Tebego at the end of 5 years. (2)
 - 4.1.2 Determine the amount earned by Shante at the end of 5 years. (2)
 - 4.1.3 Determine the difference in the interest earned by Tebego and Shante. (3)
- 4.2 The value of a bakkie presently is R85 000. Calculate the original value of the bakkie if it was bought 8 years ago and the bakkie had depreciated on the reducing balance method of 10,25 % p.a. (to the nearest rand). (3)
- 4.3 Mpume needs R10 000 at the end of 10 years to buy a new computer. She deposits Rx at the end of 2 years. She then deposits R5000 at the end of 8 years (6 years after the initial deposit).

Interest is calculated at 10 % p.a. for the first 4 years and then 12 % p.a. compounded quarterly for the next 6 years.

Calculate the value of x. (6)

[16]

[9]

QUESTION 5

Given: $f(x) = log_a x$. P(625; 4) is a point on the graph of f.

The asymptote to the graph is the y-axis. The graph intersects the x-axis at B.

- 5.1 Calculate the value of a. (3)
- 5.2 Write down the coordinates of B. (2)
- Determine the equation of f^{-1} , the inverse of f, in the form y = ... (2)
- If the point P is reflected about the line y = x. Write down the coordinates of the image point, P' (2)

The graph of $g(x) = 3(x-2)^2 - 12$ is sketched below. O and C are the x-intercepts of g and B is the turning point of g. p(x) = mx + q passes through O and D(3; t). MNQ is parallel to the y-axis with N and Q on the graphs of p and g respectively.

- 6.1 Write down the coordinates of B, the turning point of g. (2)
- 6.2 Calculate the value of t. (2)
- 6.3 Write down the equation of the graph of p. (2)
- 6.4 Determine the maximum length of NQ between O and D. (5)
- Determine the values of k for which g(x-1)-15=k has 2 unequal positive real roots. (2)
- 6.6 Determine the maximum value of $2^{-\frac{1}{2}g(x)}$ (2) [15]

Given the graph of $h(x) = \frac{4}{x-3} - 8$

- 7.1 Write down the equations of the asymptotes of h. (2)
- 7.2 Determine the intercepts of the graph of h with the axes. (3)
- 7.3 Sketch the graph of h. Clearly show ALL intercepts with the axes and the asymptotes. (3)
- 7.4 Write down the equation of the vertical asymptote of q(x) = h(x-4). (2)
- 7.5 If y = k x is the equation for one of the axes of symmetry to the graph of h, determine the value of k. (2)

QUESTION 8

- Determine f'(x) from first principles if $f(x) = x^2 5x$. (5)
- 8.2 Determine:

8.2.1
$$g'(x)$$
 if $g(x) = \left(\frac{4}{x} - \frac{x}{4}\right)^2$ (4)

$$8.2.2 \qquad D_x \left[\frac{7}{\sqrt{x}} - \frac{2}{x^3} \right] \tag{4}$$

Determine the equation of the tangent to the curve $t(x) = \sqrt{x^3}$ at x = 4. (4)

The graph of $f(x) = x^3 - x^2 - 8x + 12$ is sketched below. B and C are the turning points, A and C are the x-intercepts, and D is the y-intercept.

9.1 Write down the coordinates of D. (2)

9.2 Determine the coordinates of the turning points of f. (5)

9.3 Show that
$$f(X)$$
 has a point of inflection at $x = \frac{1}{3}$. (4)

9.4 If g(x) = f(-x) + 1, write down the coordinates of C', the image of C. (2)

9.5 Write down the value(s) of k for which f(x) = k will have

9.5.1 two unequal real roots. (2)

9.5.2 one of the roots equal to 0. (2) **[17]**

A rectangular box of cereal has a height of (5-x) units.

The expression for the volume (V) of the box is given by $V(x) = x^3 - 8x^2 + 5x + 50$.

- 10.1 If the height of the cereal box is (5 x) units, determine the area of the box in terms of x. (3)
- Calculate the value of x for which the volume of the box will be at a maximum. (5)

[8]

TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^r$$

$$A = P(1-i)^n$$
 $A = P(1+i)^n$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} \{2a + (n-1)d\}$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \ne 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$S_{\infty} = \frac{a}{1-r}$$
; $-1 < r < 1$

$$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$$

$$P = \frac{x \left[1 - \left(1 + i \right)^{-n} \right]}{i}$$

$$P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$m=tan\,\theta$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}$$
ab.sin C

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha-\beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

COMMON TEST

JUNE 2022

MARKING GUIDELINE

MARKS:

150 uniforephysics.com

TIME: 3 hours

NOTE:

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers to solve a problem is unacceptable.

This marking guideline consists of 11 pages.

_			
1.1.1	$x = 0 or x = \frac{2}{3}$	$A \checkmark 0 \ A \checkmark \frac{2}{3}$	(2)
1.1.2	$2x^2 + 5x - 9 = 0$	A√standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(5) \pm \sqrt{(5)^2 - 4(2)(-9)}}{2(2)}$	CA✓ substitution in correct formula CACA✓ answers	
	$x = -3.71 or 1.21$ $\overline{\text{ANSWER ONLY - MAX 1/4}}$	(Penalize 1 mark if rounding off is incorrect-once here for entire paper)	(4)
1.1.3	$\sqrt{16a^2 + x^2} - 5a = 0$		
	$\sqrt{16a^2 + x^2} = 5a$	A√Isolating surd	
	$16a^2 + x^2 = 25a^2$ $x^2 - 9a^2 = 0$	A✓ squaring both sides CA✓ standard form	
	(x+3a)(x-3a)=0	CA✓factors	
	$x = -3a or \ x = 3a$	CA✓answers	(5)
1.1.4	Since the numerator: $-4 < 0$ $\therefore (x-1)(x-5) > 0$ x < 1 or $x > 5OR ANSWER ONLY - 3/4 MARKS$	A \checkmark condition for numerator A \checkmark $(x-1)(x-5) > 0$ CA \checkmark CA \checkmark answers OR If graphical solution is used: AA 2 marks for graph CACA 2 marks for answer	(4)
1.2			
1.2	$x - y = 3 \rightarrow (1)$ $x^{2} - 2y^{2} - 7 = xy \rightarrow (2)$ From (1): $x = y + 3 \rightarrow (3)$ Substituting (3) into (2): $(y + 3)^{2} - 2y^{2} - 7 = y(y + 3)$ $y^{2} + 6y + 9 - 2y^{2} - 7 = y^{2} + 3y$ $-2y^{2} + 3y + 2 = 0$ $2y^{2} - 3y - 2 = 0$ $(2y + 1)(y - 2) = 0$ $y = -\frac{1}{2} \text{ or } y = 2$	A✓Making x/y the subject CA✓ substitution CA✓ standard form CA✓ factors CA✓ y/x values	

	145C - Meliforalidum		
	$x = 2\frac{1}{2} or x = 5$	$CA \checkmark x/y - values$	(6)
1.3	$\sqrt{m^{2022}-m^{2020}}$		
	$\sqrt{25 m^{2024} - 25 m^{2022}}$		
	$=\frac{\sqrt{m^{2020}(m^2-1)}}{\sqrt{25\ m^{2022}(m^2-1)}}$	A ✓ Factorization of numerator	
	$\sqrt{25 \ m^{2022}(m^2-1)}$	A ✓ Factorization of denominator	
	$=\sqrt{\frac{1}{25m^2}}$	CA√simplification	
	$=\frac{1}{5m}$	CA√answer	(4)
	$-\frac{5m}{}$	O.D.	, ,
	OR	OR	
	$\sqrt{m^{2022}-m^{2020}}$		
	$\sqrt{25 m^{2024} - 25 m^{2022}}$		
	$m^{2022}\left(1-\frac{1}{m^2}\right)$	A ✓ Factorization of numerator	
	$= \frac{\sqrt{m^{2022} \left(1 - \frac{1}{m^2}\right)}}{\sqrt{25 \ m^{2024} \left(1 - \frac{1}{m^2}\right)}}$	A ✓ Factorization of denominator	
	$\sqrt{25 m^{2024} \left(1 - \frac{1}{m^2}\right)}$		
		CA√simplification	
	$=\sqrt{\frac{25m^2}{25m^2}}$		
			(4)
	$=\frac{1}{5m}$	CA√answer	
			[25]

2.1	$T_7 = 154$; $T_8 = 200$	AA✓✓ Answers	(2)
2.2	4 14 30 52		
	1D 10 16 22 2D 6 6		
	$2a = 6 \therefore a = 3$ $3a + b = 10 \therefore b = 1$ $a + b + c = 4 \therefore c = 0$	$A \checkmark a - \text{value}$ $CA \checkmark b - \text{value}$ $CA \checkmark c - \text{value}$	
		CA✓answer	

	NSC - Melilorali	duiii	
	$T_n = 3n^2 + n$ \mathbf{OR}	OR	(4)
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$ OR $T_n = \frac{(n-1)}{2}[2a + (n-2)d] + T_1$	OR	
2.3	$T_n = 3n^2 + n = 8164$ $3n^2 + n - 8164 = 0$ $n = \frac{-1 \pm \sqrt{1 - 4(3)(-8164)}}{2(3)}$ $n = 52 \text{ or } -52,33$ n/a OR $T_n = 3n^2 + n = 8164$ $3n^2 + n - 8164 = 0$ $(n - 52)(3n + 157) = 0$ $n = 52 \text{ or } -52,33 \text{ tanmore physics.com}$ n/a ANSWER ONLY - MAX 1/5	A \checkmark Equating n^{th} term to 8164 CA \checkmark standard form CA \checkmark substitution into formula CACA \checkmark n — values and rejection OR A \checkmark Equating n^{th} term to 8164 CA \checkmark standard form CA \checkmark factors CACA \checkmark \checkmark n — values and rejection	(5)
			[11]

3.1	$S_n = a + (a+d) + \cdots (a + (n-2)d) + (a + (n-1)d) (1)$ $S_n = (a + (n-1)d) + (a + (n-2)d) + \cdots (a+d) + a (2)$ $2S_n = (2a + (n-1)d) + (2a + (n-1)d) + \cdots \text{ to } n \text{ terms}$ $2S_n = n(2a + (n-1)d)$	A \checkmark equation (1) A \checkmark equation (2) A \checkmark 2 S_n equation A \checkmark $n(2a + (n-1)d)$	
	$S_n = \frac{n}{2} [2a + (n-1)d]$		(4)
3.2	$S_n = \frac{n}{2} [2a + (n-1)d]$		
	$S_{64} = \frac{64}{2} [2(24) + (64 - 1)(12)]$	A \checkmark Substitution of n value A \checkmark Substitution of a and d values	
	= 25728	CA√Answer	(3)

3.3.1	$x + (x + 4) + (x + 8) + \cdots$ AS	A✓ AS terms	
	$y + 4y + 16y + \cdots$ GS	A √ GS terms	
	$(x + y) + (x + 4 + 4y) + (x + 8 + 16y) + \cdots$ NS	A✓NS terms	
	$x + y = 8 \dots \rightarrow (1)$	$A \checkmark x + y = 8$	
	$x + 4 + 4y = 21 \dots \rightarrow (2)$	$A \checkmark x + 4 + 4y = 21$	
	From (1): $x = 8 - y \dots \rightarrow (3)$		
	Subst. (3) into (2):		
	8 - y + 4 + 4y = 21		
	3y = 9		
	y = 3	CA √ y/x value	
	x = 5	CA √ x/y value	
	$T_3 = x + 8 + 16y$		
	$T_3 = 5 + 8 + 16(3)$		
	$T_3 = 61$	CA✓Answer	(8)
	3		
3.3.2	AS: 5;9;13;	CA✓ AS terms	
	GS: 3; 12; 48;	CA √ GS terms	
	$P_n = 4n + 1$ AS	$CA \checkmark AS - n^{th} term$	
	$Q_n = 3.4^{n-1} \dots GS$	$CA \checkmark GS - n^{th}$ term	(5)
	$T_n = 4n + 1 + 3.4^{n-1} \dots \text{NS}$	$CA \checkmark NS - n^{th}$ term	
			[20]

4.1.1	Tebego:		
	$A = P(1+i)^n$	A√Substitution	
	$A = 120\ 000 \left(1 + \frac{9,8\%}{12}\right)^{60}$	A Substitution	
	\ 12 /	CA✓Answer	(2)
412	A = R195 488,5357		
4.1.2	Shante: $A = B(1 + i)^n$		
	$A = P(1+i)^n$ 12.306, 20	A√Substitution	
	$A = 120\ 000 \left(1 + \frac{12,3\%}{4}\right)^{20}$	CA√Answer	(2)
	A = R219 911,5884	CAP THISWEI	(2)
4.1.3	Interest (Tebego): = R75 488,5357	CA√Tebogo – Interest	
	Interest (Shante): = $R99911,5884$	CA √ Shante – Interest	
	Interest (Difference): = $R24423,05$	CA✓Answer	(3)
4.2	$A = P(1-i)^n$		
	$85\ 000 = P(1 - 10,25\%)^{8}$	A ✓ Substitution i and n	
	85 000	A ✓ Making P the subject	
	$\frac{85\ 000}{(1-10,25\%)^8} = P$		
	Original Value of Bakkie was R 201 903	CA✓Answer	(3)

4.3	$10000 = \left[x \left(1 + \frac{10\%}{1} \right)^2 \left(1 + \frac{12\%}{4} \right)^{16} + 5000 \right] \left(1 + \frac{12\%}{4} \right)^8$	$A \checkmark x \left(1 + \frac{10\%}{1}\right)^2$	
	$10000 = [x(1,1)^{2}(1,03)^{16} + 5000](1,03)^{8}$	$A\checkmark \left(1+\frac{12\%}{4}\right)^{16}$	
	$10000 = x(1,1)^2(1,03)^{24} + 5000(1,03)^8$	$A\checkmark\left(1+\frac{12\%}{4}\right)^{8}$	
		CA√Simplifying	
	$\frac{10000 - 5000(1,03)^8}{(1,1)^2(1,03)^{24}} = x$	CA \checkmark Making x the subject	
	x = R1490,50	CA✓Answer	(6)
	OR	OR	
	$x\left(1 + \frac{10\%}{1}\right)^2 \left(1 + \frac{12\%}{4}\right)^{24} + 5000\left(1 + \frac{12\%}{4}\right)^8 = 10\ 000$	$A \checkmark x \left(1 + \frac{10\%}{1}\right)^2$	
	24	$A\checkmark \left(1 + \frac{12\%}{4}\right)^{24}$	
	$x\left(1 + \frac{10\%}{1}\right)^2 \left(1 + \frac{12\%}{4}\right)^{24} + 6333,85 = 10\ 000$	$A\checkmark\left(1+\frac{12\%}{4}\right)^{8}$	
	$x\left(1 + \frac{10\%}{1}\right)^2 \left(1 + \frac{12\%}{4}\right)^{24} = 3666,15$	CA √ 6333,85	
	$x = \frac{3666,15}{\left(1 + \frac{10\%}{1}\right)^2 \left(1 + \frac{12\%}{4}\right)^{24}}$	$CA \checkmark Making x$ the subject	
	x = R1490,50	CA✓Answer	(6)
			[16]

5.1	$y = \log_a x$	A√Substitution	
	$4 = \log_a 625$		
	$a^4 = 625 = 5^4$	A ✓ Writing in exponential form	
	a = 5	CA✓Answer	(3)
5.2	B(1; 0)	AA✓✓answer	(2)
5.3	$y = 5^x$	CA✓ on 5	(2)
		CA√Exponential equation	
5.4	P'(4;625)	A✓A✓answer	(2)
			[9]

6.1	(2; -12)	A✓A✓Answer	(2)
6.2	$g(3) = 3(3-2)^2 - 12$	A✓	
	t = -9	CA✓Answer	(2)
	ANSWER ONLY – FULL MARKS		
6.3	p(x) = -3x	CA✓ CA✓ Answer	(2)
6.4	$NQ = -3x - [3(x-2)^2 - 12]$	A√Subtraction	
	$NQ = -3x - [3(x^2 - 4x + 4) - 12]$		
	$NQ = -3x^2 + 9x$	$A\sqrt{-3x^2+9x}$	
	$NQ' = -6x + 9 = 0$ or $x = -\frac{b}{2a} = -\frac{9}{2(-6)}$	CA✓Derivative and equal to 0	
		CA ✓ x – value	
	$x = \frac{3}{2}$		
	The maximum length of NQ:		
	$=-3\left(\frac{3}{2}\right)^2+9\left(\frac{3}{2}\right)$		
	_ 27 27		
	$=-\frac{4}{4}+\frac{7}{2}$		(5)
	$= -\frac{27}{4} + \frac{27}{2}$ $= \frac{27}{4} \text{ units}$	CA✓Answer	(5)
6.5	-27 < k < 0	A√end points	
		CA√interval	(2)
6.6	Maximum value of $2^{-\frac{1}{2}g(x)}$		
	$=2^{-\frac{1}{2}(-12)}=2^6$	A✓maximum value = -12	
	= 64	CA✓Answer	(2)
			[15]

7.1	x = 3	A √ Vertical asymptote	
	y = -8	A√Horizontal asymptote	(2)
7.2	$y - \text{intercept}: \left(0; -9\frac{1}{3}\right)$	$A\checkmark y$ – intercept	
	x – intercept: $\frac{4}{x-3} = 8$ $8x - 24 = 4$ $8x = 28$ Stormore physics.com	$A \checkmark \frac{4}{x-3} = 8$	
	$x = \frac{28}{8} = \frac{7}{2}$	$CA \checkmark x$ - intercept	(3)
7.3		CA√both asymptotes	
	O 3 3 h	CA \checkmark both x and y intercepts A \checkmark shape	
	-8 -9.33		(3)
7.4	x = 7	CA✓CA✓Answer	(2)
	y = k - x $-8 = k - 3$ $k = -5$	A \checkmark subst. of (3; -8) CA \checkmark answer OR	(2)
	$ \begin{array}{l} \mathbf{OR} \\ y = -(x-3) - 8 \end{array} $	$A \checkmark y = -(x-3) - 8$	
	y = -x - 5 $k = -5$	CA√answer	(2)
			[12]

QUESTION 8 (penalize 1 mark once for incorrect notation in this question only)

8.1	$f'(x) = \lim_{n \to 0} \frac{f(x+h) - f(x)}{h}$	A√formula	
	$\int (x) = \lim_{n \to 0} \frac{1}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 5(x+h) - (x^2 - 5x)}{h}$	A✓substitution	
	$f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 5x - 5h - x^2 + 5x}{h}$	CA✓ simplification of numerator	
	$f'(x) = \lim_{h \to 0} \frac{2xh + h^2 - 5h}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{h(2x + h - 5)}{h}$	CA ✓ factorization	
	$f'(x) = \lim_{h \to 0} h$ $f'(x) = 2x - 5$	CA√answer	(5)
	OR	OR	
	$f(x+h) = (x+h)^2 - 5(x+h)$		
	$= x^2 + 2xh + h^2 - 5x - 5h$	$A \checkmark f(x+h)$ value	
	$f(x+h) - f(x) = 2xh + h^2 - 5h$	$CA \checkmark f(x+h) - f(x)$ value	
	$\frac{f(x+h) - f(x)}{h} = \frac{h(2x+h-5)}{h} = (2x+h-5)$	$CA \checkmark \frac{f(x+h)}{h}$ value	
	$f'(x) = \lim_{h \to 0} (2x + h - 5)$	A√formula	
	f'(x) = 2x - 5	CA✓answer	(5)
8.2.1	$g(x) = \left(\frac{4}{x} - \frac{x}{4}\right)^2$ $g(x) = 16x^{-2} - 2 + \frac{1}{16}x^2$		
	$g(x) = 16x^{-2} - 2 + \frac{1}{16}x^2$	$A\checkmark1^{st}$ and 3^{rd} terms $A\checkmark2^{nd}$ term	
	$g'(x) = -32x^{-3} + \frac{1}{8}x$	CACA✓✓ derivatives	(4)
8.2.2	$D_x \left[\frac{7}{\sqrt{x}} - \frac{2}{x^3} \right]$		
	$= D_x \left[7x^{-\frac{1}{2}} - 2x^{-3} \right]$ $= -\frac{7}{2}x^{-\frac{3}{2}} + 6x^{-4}$	A✓A✓ writing in exponential form – each term	
	$= -\frac{7}{2}x^{-\frac{3}{2}} + 6x^{-4}$	CACA✓✓answers	(4)

8.3	$t(x) = \sqrt{x^3}$		
	$t(x) = x^{\frac{3}{2}}$		
	$t'(x) = \frac{3}{2}x^{\frac{1}{2}}$	A√derivative	
	$m = t'(4) = \frac{3}{2}(4)^{\frac{1}{2}} = 3$	$A \checkmark m$ of tangent	
	$y = \sqrt{4^3} = \sqrt{64} = 8$		
	$y = mx + c$ $8 = 3(4) + c \qquad \therefore c = -4$	CA √ c – value	
	y = 3x - 4	CA✓answer	(4)
			[17]

9.1	D (0; 12)	AA✓✓Answer	(2)
9.2	$f(x) = x^{3} - x^{2} - 8x + 12$ $f'(x) = 3x^{2} - 2x - 8 = 0$ $(3x + 4)(x - 2) = 0$ $x = -\frac{4}{3} or 2$ $y = \frac{500}{27} or 0$	A \checkmark derivative A \checkmark derivative equal to 0 CA \checkmark factors CA \checkmark x – values	
	Max: $\left(-\frac{4}{3}; 18.52\right)$ Min: (2; 0)	CA✓ <i>y</i> - values	(5)
9.3	$f''(x) = 6x - 2 = 0$ $x = \frac{1}{3}$ Choose values of x on either side of $x = \frac{1}{3}$ $f''(-2) = 6(-2) - 2 = -14$ Since $f''(x) < 0 : f$ is concave down for $x < \frac{1}{3}$ $f''(2) = 6(2) - 2 = 10$ Since $f''(x) > 0 : f$ is concave up for $x > \frac{1}{3}$ f has a point of inflection at $x = \frac{1}{3}$, since there is a change in concavity.	A \checkmark 2 nd derivative = 0 A \checkmark x = $\frac{1}{3}$ A \checkmark 2 nd derivative value and conclusion A \checkmark 2 nd derivative value and conclusion	(4)
9.4	(-2; 1)	CACA✓✓answer	(2)
9.5.1	k = 0 or k = 18.52	$A \checkmark k = 0$ $CA \checkmark k = 18.52$	(2)
9.5.2	k = 12	A✓ A✓ Answer	(2)
			[17]

		TOTAL	150
			[8]
	V''(5) = 6(5) - 16 = 14 > 0 $x = \frac{1}{3}$ The volume will be at a maximum.		
	$V''\left(\frac{1}{3}\right) = 6\left(\frac{1}{3}\right) - 16 = -14 < 0$		
	V''(x) = 6x - 16		
	For the last mark:		
	OR		
	$x = \frac{1}{3}$ The volume will be at a maximum.		
	For the last mark:		
	OR		
	$x = \frac{1}{2}$ The volume will be at a maximum.	CA✓ Conclusion	(5)
	cubic function is		
	Since the coefficient of $x^3 = 1$, the shape of the		
	$x = \frac{1}{3} or 5$	CA. X – values	
		CA \checkmark factors CA \checkmark x – values	
	$V'(x) = 3x^2 - 16x + 5 = 0$ $(3x - 1)(x - 5) = 0$	A√derivative A√derivative equal to 0	
10.2	$V(x) = x^3 - 8x^2 + 5x + 50$		
	$l \times b = 10 + 3x - x^2 \dots$ Area of base of the box.	A√Answer	(3)
	$V(x) = (5 - x)(10 + 3x - x^2) = l \times b \times h$	A✓Product	
	$V(x) = x^3 - 8x^2 + 5x + 50 = l \times b \times h$		
10.1	Volume(V) = Area of Base x Height	A√Formula	