Downloaded from Stanmorephysics.com CLICK HERE

NAME OF THE PROPERTY OF THE PR

EDUCATION

REPUBLIC OF BOUTH AFPICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1 PREPARATORY EXAMINATION SEPTEMBER 2022

MARKS: 150

TIME: 3 hours

This question paper consists of 9 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of 13 questions. 1.
- Read the questions carefully. 2.
- Answer ALL the questions. 3.
- Number your answers exactly as the questions are numbered. 4.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining 5. your answers.
- Answers only will NOT necessarily be awarded full marks. 6.
- You may use an approved scientific calculator (non-programmable and non-graphical), 7. unless stated otherwise.
- downloaded from stannor If necessary, round off answers correct to TWO decimal places, unless stated otherwise. 8.
- Diagrams are NOT necessarily drawn to scale. 9.
- Write neatly and legibly. 10.

1.1 Solve for x:

1.1.1
$$(x+5)(2x-1) = 0$$
 (2)

1.1.2
$$-3x^2 - 7x = -8$$
 (correct to TWO decimal places) (4)

1.1.3
$$\sqrt{x+5}+1=x$$
 (5)

$$1.1.4 (2x-3)(x+5) \le 0 (3)$$

1.2 Solve for x and y simultaneously if:

$$x+3y=5$$
 and $xy+y^2-3=0$ (6)

1.3 Simplify fully, without the use of a calculator:

$$\sqrt[n]{\frac{10^n + 2^{n+2}}{5^{2n} + 4.(5^n)}} \quad \text{where} \quad n \neq 0$$
 (4)

[24]

QUESTION 2

Given the quadratic number pattern: 5; 9; 17; 29; ...

Show that the
$$n^{\text{th}}$$
 term of the quadratic pattern is given by $T_n = 2n^2 - 2n + 5$ (4)

QUESTION 3

Evaluate:
$$\sum_{k=1}^{50} (30-4k)$$
 [4]

Given the geometric series $a + ar + ar^2 + ar^3 + ...$, where a is the first term and r is the common ratio. Prove that the sum to n terms of this series is given by

$$S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1 \tag{4}$$

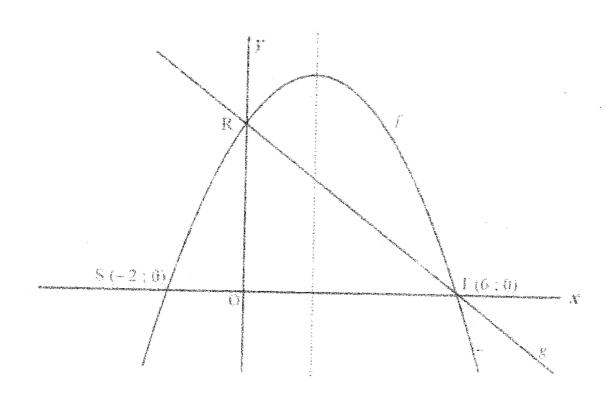
- The first two terms of a geometric sequence with constant ratio r, and an arithmetic sequence with constant first difference, d, is the same. The first term is 12.
 - 4.2.1 Write down the second and third terms of **EACH** sequence in terms of d and r.
 - 4.2.2 If it is further given that the sum of the first three terms of the geometric sequence is three more than the sum of the first three terms of the arithmetic sequence. Determine two possible values of the common ratio, r, of the geometric sequence.

QUESTION 5

Sketched below is the graph of $h(x) = 1 - \frac{1}{x-2}$. A is y-intercept and B is the x-intercept of h.

- 5.1 Write down the equations of the asymptotes of h. (2)
- 5.2 Calculate the coordinates of A and B. (3)
- Write down the equation of the line of symmetry of h with positive gradient. (2)
- 5.4 Write down the range of h. (1) [8]

Copyright Reserved


Please turn over

(5) [7]

S(-2; 0) and T(6; 0) are the x-intercepts of the graph of $f(x) = ax^2 + bx + c$; $a \ne 0$.

R is the y-intercept of f and g.

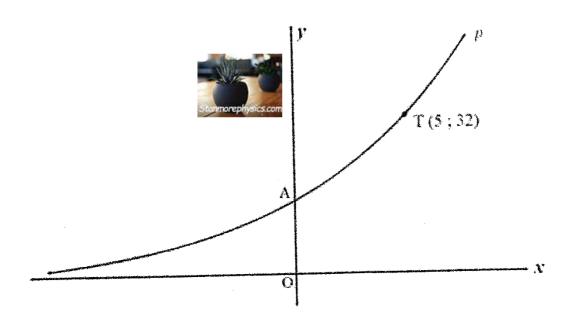
The straight line through R and T has the equation g(x) = -2x + d.

6.1 Calculate the value of
$$d$$
. (2)

6.2 Show that
$$f(x) = -x^2 + 4x + 12$$
. (4)

6.3 Calculate the coordinates of the turning point of
$$f$$
. (3)

6.4 Determine for which values of x will:


6.4.1
$$f(x) - g(x) \ge 0$$
 (2)

$$6.4.2 x. f(x) < 0 (3)$$

6.5 Determine the coordinates of R', the image of R on
$$p$$
 if $p(x) = -f(x-2)$. (2)

[16]

Sketched below is the graph of $p(x) = a^x$; a > 0; $a \ne 1$. The graph intersects the y – axis at A. The point T (5; 32) lies on p.

(2) Write down the coordinates of the point A. 7.1 (2) Calculate the value of a. 7.2 (1) Write down the domain of p. 7.3 (2) Write down the equation of p^{-1} , the inverse of p, in the form y = ...7.4 (2) Determine the values of x if $p^{-1}(x) \le 5$. 7.5 [9]

Math Detical Propagatory Examination 2022 NSC – GRADE 12

QUESTION 8

8.1 Dipinda opened an account with an amount of R5000 on 1 June 2021. She then makes monthly deposits of R600 at the end of every month. Her first deposit is made on the 30 June 2021 and her last deposit on 30 April 2023. The account earns interest of 14,25% per annum compounded monthly. Calculate the amount that is in the account directly after her last deposit is made into the account.

(6)

- 8.2 Molly wants to buy a house for her family for R800 000. She agreed to pay monthly instalments of R10 000 on the loan which incurred interest at a rate of 13,35 % per annum compounded monthly. The first payment was made at the end of the first month after the loan was granted.
 - 8.2.1 Show that the loan will be paid back in full after in 200 months. (4)
 - 8.2.2 Suppose Molly encountered unexpected expenses and was unable to pay any property instalment at the end of the 120th, 121st, 122nd and 123rd months. At the end of the 124th month she increased her payment to still pay off the loan in 200 months by making 77 equal monthly payments.
 - a) Calculate the balance on the loan after the 119th payment was made. (3)
 - b) Calculate the new monthly instalment Molly must pay from the 124th month to settle the loan in 200 months. (4)

[17]

QUESTION 9

- 9.1 Determine f'(x) from first principles if $f(x) = \frac{2}{3x}$. (5)
- 9.2 Determine:

9.2.1
$$g'(x)$$
 if $g(x) = (x+7)^3$ (5)

9.2.2
$$\frac{dy}{dx}$$
 if $y = \sqrt{x^5} - \frac{4}{9x^2}$ (4)

[14]

Mathematics/P1 Downloaded from Stanmorephysics ZIC Paparatory Examination 2022 NSC - GRADE 12

QUESTION 10

10.1 Given:
$$f(x) = x^3 - 12x - 16$$

10.1.1 Calculate the
$$x$$
-intercepts of the graph of f . (5)

10.1.2 Determine the coordinates of the turning points of
$$f$$
. (4)

10.1.3 Sketch the graph of
$$f$$
, indicating the intercepts with the axes and the coordinates of the turning points. (4)

10.1.4 Determine the values of
$$x$$
 for which the graph of f is concave up. (2)

10.2 Given:
$$p(x) = -x^3 - 8x$$

Is it possible to draw a tangent with positive gradient to the graph of
$$p$$
?

Show all calculations to justify your answer.

[18]

QUESTION 11

The lead, L, in metres, of a runner in the comrades' marathon in the last t minutes of the race, where $t \in [0,75]$ is given by equation:

$$L = 1000 + 6t - \frac{t^2}{4}$$

11.1 Determine
$$\frac{dL}{dt}$$
. (2)

11.3 At what rate is the runner's lead decreasing when
$$t = 60$$
 minutes? (2) [6]

Please turn over Copyright Reserved

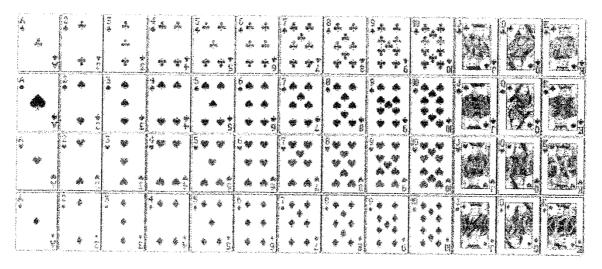
Given the word "BRACKET". The letters of this word are randomly arranged to form new arrangements of the letters.

- How many unique arrangements of the letters can be made? (2)
- Determine the number of unique arrangements of the letters that are randomly made if the letters R and A must be together.

(3) [**5**]

tanmorephysics.com

QUESTION 13


13.1 Two different events A and B are mutually exclusive.

It is further given that:

- P(B) = P(A)
- P(A or B) = 0.63

Calculate P(B). (3)

13.2 Two cards from a regular pack of 52 playing cards (shown below), are drawn at random one after the other, without replacement.

Calculate the probability that:

both cards are picture cards.

(2)

13.2.2 at least one of the cards is a picture card.

(3) [8]

TOTAL: 150

Mathematics/P1Downloaded from Stanmorephysics.con KZN Preparatory Examination 2022 NSC - GRADE 12

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^n$$

$$A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$S_{\infty} = \frac{a}{1-r}$$
; $-1 < r < 1$

$$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$$

$$F = \frac{x\left[\left(1+i\right)^{n}-1\right]}{i} \qquad P = \frac{x\left[1-\left(1+i\right)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$m = \tan \theta$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$\operatorname{area} \Delta \mathbf{A} \mathbf{B} \mathbf{C} = \frac{1}{2} ab. \sin \mathbf{C}$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$cos(\alpha - \beta) = cos \alpha . cos \beta + sin \alpha . sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\overline{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

PREPARATORY EXAMINATION

SEPTEMBER 2022

MARKING GUIDELINE

MARKS: 150

TIME: 3 hours

Stanmorephysics.com

NOTE:

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a problem is unacceptable.

This marking guideline consists of 12 pages.

1.1.1	$x = -5 or x = \frac{1}{2}$		A✓	-5 A \checkmark $\frac{1}{2}$	(2)
1.1.2	$-3x^{2} - 7x + 8 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-(-7) \pm \sqrt{(-7)^{2} - 4(-3)(8)}}{2(-3)}$ $x = -3.17 \qquad or \qquad 0.84$	(Penalize 1 mark if rounding off is incorrect – once here for entire paper)		standard form correct substitution into quadratic formula CA ✓ answers	
					(4)
1.1.3	$\sqrt{x+5} + 1 = x$ $\sqrt{x+5} = x - 1$ $(\sqrt{x+5})^2 = (x-1)^2$ $x+5 = x^2 - 2x + 1$ $x^2 - 3x - 4 = 0$ $(x+1)(x-4) = 0$ $x = -1 \text{ or } x = 4$ n/a		CA✓ CA✓ CA✓	isolating surd standard form factors $x \neq -1$ $x = 4$	(5)
1.1.4	$-5 \le x \le \frac{3}{2}$		A✓	critical value – 5 critical value $\frac{3}{2}$ interval notation	(3)

	NSC Marking Guidenin	-		
1.2	$x + 3y = 5 \qquad \rightarrow (1)$			
	$xy + y^2 - 3 = 0 \longrightarrow (2)$			
	From (1): $x = 5 - 3y \rightarrow (3)$	A✓	making x the subject	
	Substituting (3) into (2):			
	$y(5-3y)+y^2-3=0$	CA✓	substitution	
	$-2y^2 + 5y - 3 = 0$ anmore physics.com			
	$2y^2 - 5y + 3 = 0$	CA✓	standard form	
	(2y - 3)(y - 1) = 0			
		CA✓	factors	
	$y = \frac{3}{2} \text{ or } y = 1$	CA✓	y – values	
	$x = \frac{1}{2} or x = 2$			
	2	CA✓	<i>x</i> − values	(6)
	OR			
	$x + 3y = 5 \qquad \to (1)$	OR		
	$xy + y^2 - 3 = 0 \qquad \rightarrow (2)$			
	From (1): $y = \frac{5-x}{3} \to (3)$			
	Substituting (3) into (2):	A✓	making <i>y</i> the subject	
	$x\left(\frac{5-x}{3}\right) + \left(\frac{5-x}{3}\right)^2 - 3 = 0$	CA✓	substitution	
	$3x(5-x) + 25 - 10x + x^2 - 27 = 0$		1 16	
	$-2x^2 + 5x - 2 = 0$	CA✓	standard form	
	$2x^2 - 5x + 2 = 0$		C	
	(2x - 1)(x - 2) = 0	CA✓	factors	
	$x = \frac{1}{2} or x = 2$	CA▼	<i>x</i> – values	
	$y = \frac{3}{2} \text{ or } y = 1$	CAL	u voluce	
	$y - \frac{1}{2}$ or $y - 1$	CAV	y – values	(6)
1.3	$n \sqrt{10^n + 2^{n+2}}$			
	$\frac{10^{-4} \cdot 2}{5^{2n} + 4.5^n}$			
	\(\sigma^{5-1} + 4.5^{\display}\)			
	$n 2^n . 5^n + 2^n . 2^2$			
	$=\sqrt{5^{2n}+4.5^n}$			
	$= {n \over 2^n (5^n + 4)}$	A✓	factorising numerator	
	$\int 5^n(5^n+4)$	A✓	factorising denominator	
	$n 2^n$			
	$=$ $\frac{n}{r}$ $\frac{2^{r}}{r}$	CA✓	simplifying	
	\ \sqrt{5"}			
	$=\frac{2}{-}$	CA✓	answer	(4)
	$=\frac{1}{5}$			
				[24]

2.1	45 ; 65	AA	answers	(2)
2.2	1D 4 8 12 St. nmore shysics.com			
	2D 4 4			
	$2a = 4 \therefore a = 2$ $3a + b = 4 \therefore b = -2$	A✓ A✓	2a = 4 $a = 2$ $3a + b = 4$ $a + b + c = 5$	
	$a+b+c=5 \therefore c=5$ $T_n = 2n^2 - 2n + 5$			(4)
2.3	$T_n = 2n^2 - 2n + 5 = 2023$ $2n^2 - 2n - 2018 = 0$ $n^2 - n - 1009 = 0$ $n = \frac{1 \pm \sqrt{1 + 4036}}{2} = 32.27 \text{ or } -31.27$		equating n^{th} term to 2023 standard form n – values	
	Since <i>n</i> is not a Natural Number, 2023 is not a term of the sequence.	CA✓	conclusion	(4)
				[10]

QUESTION 3

$S_{50} = \frac{50}{2} [26 + (-170)]$ $S_{50} = -3600$		[4]
OR $S_n = \frac{n}{2} [a + T_n]$ $S_n = \frac{50}{2} [26 + (-170)]$	$A\checkmark$ $n-$ value $A\checkmark$ $a-$ value $A\checkmark$ $T_{50}-$ value $CA\checkmark$ answer	(4)
$S_{50} = \frac{50}{2} [2(26) + (50 - 1)(-4)]$ $S_{50} = -3600$	CA✓ answer OR	(4)
$26; 22; 18;$ $S_n = \frac{n}{2}[2a + (n-1)d]$	$A\checkmark$ $n-$ value $A\checkmark$ $a-$ value $A\checkmark$ $d-$ value	

4.1	$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} \to (1)$ $rS_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n \to (2)$ $(2) - (1):$	A√ A√	equation (1) equation (2)	
	$ rS_n - S_n = ar^n - a $ $S_n(r-1) = a(r^n - 1) $	A✓	subtracting LHS and RHS terms	
	$S_n = \frac{a(r^n - 1)}{r - 1} \; ; r \neq 1$	A✓	factorising	(4)
4.2.1	AS: 12 + d; 12 + 2d;	A✓	AS set up of terms	
	GS: $12r$; $12r^2$;	A✓	GS set up of terms	(2)
4.2.2	$12 + d = 12r \rightarrow (1)$	A✓	equation (1) and (2)	
	$36 + 3d + 3 = 12 + 12r + 12r^{2} \rightarrow (2)$ From (1): $d = 12r - 12 \rightarrow (3)$ Substituting (3) into (2), we have $36 + 3(12r - 12) + 3 = 12 + 12r + 12r^{2}$ $12 + (12r - 12) + 1 = 4 + 4r + 4r^{2}$	A✓	making d the subject	
	$4r^2 - 8r + 3 = 0$	CA✓	standard quadratic form	
	(2r-1)(2r-3) = 0	1	factors	
	$r = \frac{1}{2} \ or \ r = \frac{3}{2}$	CA✓	answers	
				(5)
				[11]

QUESTION 5

5.1	$y = 1 - \frac{1}{x - 2}$		
	x = 2 and y = 1	$\begin{vmatrix} A\checkmark & x = 2 \\ A\checkmark & y = 1 \end{vmatrix}$	(2)
5.2	$y - \text{intercept} : \left(0; 1\frac{1}{2}\right)$	A✓ <i>y</i> -intercept	
	x – intercept: $x = 3$	$A\checkmark x=3$	
	(3; 0)	CA✓ coordinate form	(3)
5.3	y = x - 1	A✓ Gradient value	(2)
		$\mathbf{A}\checkmark y$ – intercept	
5.4	$y \in R; y \neq 1$	A √ answer	(1)
	OR	OR	
	$y\in (-\infty;1)\cup (1;\infty)$	A √ answer	(1)
			[8]

6.1	0 = -2(6) + d	A 🗸	substitution of point T(6; 0)	
	d = 12	A✓	answer	(2)
		Answ	ver only full marks	
6.2	c = 12			
	y = a(x+2)(x-6)	A✓	subst. x – intercepts	
	12 = a(0+2)(0-6)	A✓	substitution R(0; 12)	
	12 = -12a			
	a = -1	A✓	a − value	
	y = -1(x+2)(x-6)	A✓	a – value and factors	
	$f(x) = -x^2 + 4x + 12$			(4)
	OR	OR		
	$x = 2 \dots Axis of symmetry$	A✓	axis of symmetry value	
	$y = a(x-2)^2 + q \dots (A)$			
	Substituting (0;12) into (A)			
	$12 = a(0-2)^2 + q \rightarrow 12 = 4a + q \dots (1)$	A✓	substitution R(0; 12)	
	Substituting (6;0) into (A)			
	$0 = a(6-2)^2 + q \rightarrow 0 = 16a + q \dots (2)$			
	$(1) - (2):$ $12 = -12a$ $-1 = a$ $16 = q$ $y = -1(x - 2)^{2} + 16$ $f(x) = -x^{2} + 4x + 12$	A✓ A✓	a – value a – value and TP	(4)
6.3	$-2x + 4 = 0 \text{ or } x = -\frac{4}{2(-1)} \text{ or } x = \frac{-2+6}{2}$	A✓	Using calculus/formula/midpoint	
	$x = 2$ $y = -(2)^{2} + 4(2) + 12 = 16$ $(2; 16)$		x = 2 (provided it is +ve) y - value	(3)
6.4.1	$0 \le x \le 6$		√answer	(2)
6.4.2	-2 < x < 0 or x > 6	1.2	lty 1 mark for incorrect notation) \checkmark −2 < x < 0 A \checkmark x > 6	(3)
6.5	R/(2;-12)		value - value	(2)
		A √ y	– value	[17]

7.1	A(0;1)	AA✓✓answer	(2)
7.2	$y = a^x$		
	$32 = a^5$	A \checkmark substitution of point T(5;32)	(2)
	a=2	A √ answer	(-)
7.3	$x \in R$	A √ answer	(1)
	OR	OR	(1)
	$x \in (-\infty; \infty)$	A √ answer	(1)
7.4	$y = \log_2 x$	CACA✓✓answer	(2)
7.5	$\log_2 x = 5$	CA✓ end points	
	$x = 2^5 = 32$	A √ interval	
	$\begin{vmatrix} x - 2 - 32 \\ 0 < x \le 32 \end{vmatrix}$		
	$0 < \lambda \le 32$	Can be solved by log inequalities.	(2)
		Answer Only – Full marks	
			[9]

QUESTION 8

8.1									
	1 Jun	31 Jul	31Aug		30 Apr				
	2021	2021	2021		2023		A - fe	<u>ormula</u>	
	5000	600	600		600		A✓	value of <i>n</i>	
	Dipinda's		l				A✓	value of <i>i</i>	
	= P(1 +	$i)^n + \frac{x[(i)^n]}{(i)^n}$	$\frac{(1+i)^n}{i}$	<u>- 1]</u>	/ 14.25	₃₀₆ 23 1	A✓	formula value of <i>n</i>	
	= 500	$0\left(1+\frac{1}{2}\right)$	$\frac{4.25\%}{12}$) ²³	+	$\frac{\left(1 + \frac{11.25}{12} + \frac{14.25}{12}\right)}{\frac{14.25}{12}}$	$\left[\frac{5\%}{6}\right]^{23} - 1$	011	correct substitution into A correct substitution into Fv	
	= R22	321,54			12		CA✓	answer	(6)
8.2.1	$P = \frac{x[1]}{x}$	-(1+i)	$^{-n}$]						
		$0 = \frac{1000}{1000}$	$00 \left[1 - \left(\frac{13}{13}\right)\right]$	$ \begin{array}{r} 1 + \frac{13.35}{12} \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 13.35 \\ \hline 12 \\ \hline 13.35 \\ \hline 12 \\ \hline 13.35 \\ \hline 13.35 \\ \hline 14 \\ \hline 15 \\ 15 \\ \hline 15 \\ \hline $	$\left(\frac{\%}{2}\right)^{-n}$		A V	value of P, x and value of i substitution into formula	
	n = 199. Therefore	e the loan	2 will be p				A✓ A✓	use of logs decimal value	(4)
	formula to					into the Pv nths.			

Copyright Reserved

8.2.2a	$P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $= \frac{10\ 000\left[1 - \left(1 + \frac{13.35\%}{12}\right)^{-80,5083362}\right]}{\frac{13.35\%}{12}}$ $= R530\ 009,55$ If $n = 81$ is used and $P = R532\ 010,58$ Give a maximum of 2/3 marks N.B. Candidates can also use the method of $A - Fv$	$A\checkmark$ value of n $A\checkmark$ value of i $CA\checkmark$ answer	(3)
8.2.2b	$A = P(1+i)^{n}$ $A = R530\ 009,55 \left(1 + \frac{13.35\ \%}{12}\right)^{4}$ $A = R553\ 991,4839$ $P = \frac{x[1 - (1+i)^{-n}]}{i}$ $553\ 991,4839 = \frac{x\left[1 - \left(1 + \frac{13.35\ \%}{12}\right)^{-77}\right]}{\frac{13.35\ \%}{12}}$ $x = R10\ 748,55$	$A\checkmark$ value of n $CA\checkmark$ answer $A\checkmark$ value of n $CA\checkmark$ answer	(4)
			[17]

QUESTION 9 (penalize 1 mark once for incorrect notation in this question)

9.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	A✓	formula	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{\frac{2}{3(x+h)} - \frac{2}{3x}}{h}$	A✓	substitution	
	$f'(x) = \lim_{h \to 0} \frac{2x - 2(x+h)}{3x(x+h)} \times \frac{1}{h}$		LCD simplification of	
	$f'(x) = \lim_{h \to 0} \frac{2x - 2x - 2h}{3x(x+h)} \times \frac{1}{h}$ $f'(x) = \frac{-2}{3x^2}$	Gri	numerator	
	$f'(x) = \frac{-2}{3x^2}$	CA✓	answer	(5)
	OR	OR		
	$f(x+h) = \frac{2}{3(x+h)}$		value of $f(x + h)$ value of	
	$f(x+h) - f(x) = \frac{2}{3(x+h)} - \frac{2}{3x}$ $f(x+h) - f(x) = -2$		f(x+h)-f(x)	
	$\frac{f(x+h) - f(x)}{h} = \frac{-2}{3x(x+h)}$	CA✓	value of $\frac{f(x+h) - f(x)}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{-2}{3x(x+h)}$	A✓	formula	
	$f'(x) = \frac{-2}{3x^2}$	CA✓	answer	(5)
9.2.1	$g(x) = (x+7)^3$ $g(x) = x^3 + 21x^2 + 147x + 343$ $g'(x) = 3x^2 + 42x + 147$	mark, marks	•	(F)
		CACA	ACA✓✓✓ each term	(5)
9.2.2	$y = \sqrt{x^5} - \frac{4}{9x^2}$ $y = x^{\frac{5}{2}} - \frac{4}{9}x^{-2}$	AA 🗸	✓ g in exponential form	
	$\frac{dy}{dx} = \frac{5}{2}x^{\frac{3}{2}} + \frac{8}{9}x^{-3}$	CACA	A✓✓ each term	(4)
				[14]

10.1.1	$x^3 - 12x - 16 = 0$ (x + 2)(x ² - 2x - 8) = 0	A✓	binomial factor	
	(x+2)(x+2)(x-4) = 0		√ factors	
	x = -2 or x = 4	CA C	A ✓✓ answers	(5)
10.1.2	$f(x) = x^3 - 12x - 16$ $f'(x) = 3x^2 - 12 = 0$ $x^2 - 4 = 0$ $(x + 2)(x - 2) = 0$	A✓	derivative and equating to 0	
	$\begin{vmatrix} x + 2f(x - 2) = 0 \\ x = -2 \text{ or } x = 2 \end{vmatrix}$	CA✓	factors	
	y = 0 or $y = -32$	CA✓	<i>x</i> − values	
		CA✓	y – values	(4)
10.1.3	920 W			
	(-2:0)			
	0	CA✓	Maximum and	
			Minimum points	
			x – intercepts	
		1	y – intercept	
	-16	A✓	shape	
	(2:-32)			
				(4)
10.1.4	$f^{\prime\prime}(x) = 6x > 0$	A✓	2 nd derivative	
	x > 0 Answer only: full marks	A✓	answer	
			_	(2)
10.2	$p'(x) = -3x^{2nore} 3^{hysics.com}$	A✓	derivative	
	$-3x^2 \le 0$ for all $x \in R$	A✓	reasoning	
	$-3x^2 - 8 \le 0$			
	The gradient of all tangents to the graph of p is always	A✓	reasoning	
	negative.		J	
				(0)
				(3)
				[18]

11.1	$L = 1000 + 6t - \frac{t^2}{4}$		
	$\frac{dL}{dt} = 6 - \frac{1}{2}t$	AA✓✓ for each term	(2)
11.2	For greatest lead: $\frac{dL}{dt} = 0$ $6 - \frac{1}{2}t = 0$ $t = 12 \text{ minutes}$	$CA \checkmark \frac{dL}{dt} = 0$ or equating derivative to 0 $CA \checkmark \text{ answer}$	(2)
11.3	$\frac{dL}{dt}_{t=60} = 6 - \frac{1}{2}(60)$ $\frac{dL}{dt}_{t=60} = -24$ The runner's lead is decreasing at 24 metres per minute	CA \checkmark substitution of $t = 60$ into derivative and value of -24 CA \checkmark conclusion (provided the derivative is $-$ ve)	(2)
	1		[6]

QUESTION 12

12.1	7! or 5 040	A✓ A✓ 7! or 5040	
			(2)
12.2	6! × 2!	AA✓✓6! × 2!	
	= 1440	A✓ 1440	(3)

13.1	0,63 = 3P(B) + P(B)				A✓ condition for mutually exclusive events		
	4P(B) = 0.63 P(B) = 0.16				A✓ A✓	correct substitution P(B) value	(3)
13.2.1	P(Both Picture cards) = $\frac{12}{52} \times \frac{11}{51}$			A✓	$\frac{12}{52} \times \frac{11}{51}$	(3)	
	$=\frac{11}{221}=0.0498=4.98\%$			A✓	$A \checkmark \frac{11}{221} = 0.0498 = 4.98 \%$		
13.2.2	1 ST	2 ND	Outcomes	Probabilities			
		11/51 P	PP	$\frac{12}{52} \times \frac{11}{51}$			
	P						
	12/52	40/51 NP	PNP	$\frac{12}{52} \times \frac{40}{51}$			
	40/52	12/51 P	NPP	$\frac{40}{52} \times \frac{12}{51}$			
	NP ~						
		39/51 NP	NPNP	$\frac{40}{52} \times \frac{39}{51}$			
	P (at least 1 pictur	re card)			1		
	= 1 – P (no pictur				A✓ N	Method	
	$=1-\left(\frac{40}{52}\times\frac{39}{51}\right)$				A√C	Correct Substitution	
	_ (02 01)				A✓	$\frac{7}{17} = 0,4118 =$	
	$=\frac{7}{17}=0,4118=$	= 41,18 %				41,18 %	
	OR				OR		(3)
	P (at least 1 pictur	re)					
	$= \left(\frac{12}{52} \times \frac{11}{51}\right) + \left(\frac{12}{51} \times \frac{11}{51}\right)$	$\left(\frac{12}{52} \times \frac{40}{51}\right) + \left(\frac{4}{5}\right)$	$\frac{10}{12} \times \frac{12}{51}$		AA✓	✓ probabilities	
	$= \frac{7}{17} = 0.4118 =$	(02 01)	02 51/		A✓	$\frac{7}{17} = 0,4118 =$	
	$=\frac{17}{17}=0.4118=$	= 41,18 %				41,18 %	
							(3)
							[8]