

basic education

Department: **Basic Education** REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS PI

NOVEMBER 2022

MARKS: 150

TIME: 3 hours

This question paper consists of 9 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of 10 questions. 1.
- Answer ALL the questions. 2.
- Number the answers correctly according to the numbering system used in this 3. question paper.
- Clearly show ALL calculations, diagrams, graphs, etc. that you have used in 4. determining your answers.
- Answers only will NOT necessarily be awarded full marks. 5.
- You may use an approved scientific calculator (non-programmable and non-6. graphical), unless stated otherwise.
- If necessary, round off answers to TWO decimal places unless stated otherwise. 7.
- Diagrams are NOT necessarily drawn to scale. 8.
- downloaded from S An information sheet with formulae is included at the end of the question paper. 9.
- Write neatly and legibly. 10.

1.1 Solve for x:

1.1.1
$$(3x-6)(x+2)=0$$
 (2)

1.1.2
$$2x^2 - 6x + 1 = 0 \quad \text{(correct to TWO decimal places)}$$
 (3)

$$1.1.3 x^2 - 90 > x (4)$$

$$1.1.4 x - 7\sqrt{x} = -12 (4)$$

1.2 Solve for x and y simultaneously:

1.1.4
$$x-7\sqrt{x}=-12$$
 (4)
Solve for x and y simultaneously:
 $2x-y=2$
 $xy=4$ (5)
Show that $2.5^n-5^{n+1}+5^{n+2}$ is even for all positive integer values of x

Show that
$$2.5^n - 5^{n+1} + 5^{n+2}$$
 is even for all positive integer values of n . (3)

1.4 Determine the values of x and y if:
$$\frac{3^{y+1}}{32} = \sqrt{96^x}$$

[25]

QUESTION 2

QUESTION 2

- The first term of a geometric series is 14 and the 6th term is 448. 2.1
 - Calculate the value of the constant ratio, r. 2.1.1 (2)
 - Determine the number of consecutive terms that must be added to the first 2.1.2 6 terms of the series in order to obtain a sum of 114 674. **(4)**
 - If the first term of another series is 448 and the 6th term is 14, calculate the sum to infinity of the new series. (3)
- If $\sum_{k=0}^{k} \left(\frac{1}{3}p + \frac{1}{6}\right) = 20\frac{1}{6}$, determine the value of k. 2.2 (5)[14]

It is given that the general term of a quadratic number pattern is $T_n = n^2 + bn + 9$ and the first term of the first differences is 7.

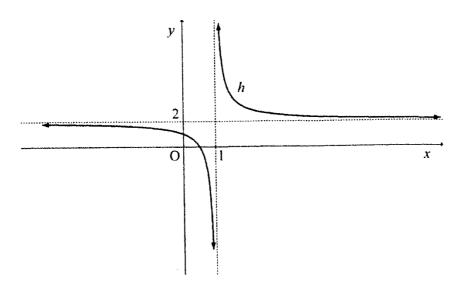
3.1 Show that b = 4.

(2)

3.2 Determine the value of the 60th term of this number pattern.

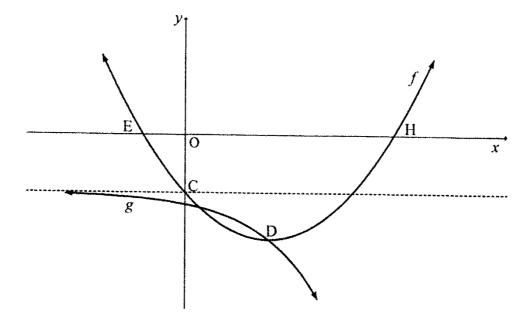
(2)

Determine the general term for the sequence of first differences of the quadratic number pattern. Write your answer in the form $T_p = mp + q$.


(3)

3.4 Which TWO consecutive terms in the quadratic number pattern have a first difference of 157?

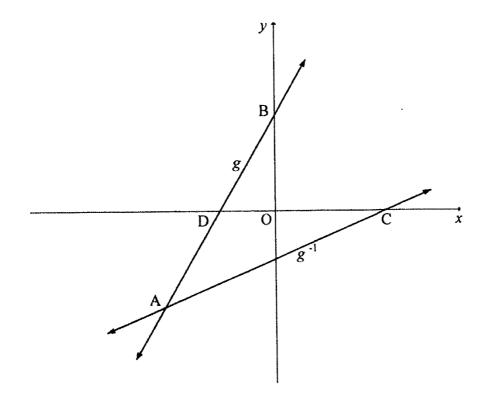
(3) [**10**]


QUESTION 4

Sketched below is the graph of $h(x) = \frac{1}{x+p} + q$. The asymptotes of h intersect at (1; 2).

- 4.1.1 Write down the values of p and q. (2)
- 4.1.2 Calculate the coordinates of the x-intercept of h. (2)
- 4.1.3 Write down the x-coordinate of the x-intercept of g if g(x) = h(x+3). (2)
- 4.1.4 The equation of an axis of symmetry of h is y = x + t. Determine the value of t. (2)
- 4.1.5 Determine the values of x for which $-2 \le \frac{1}{x-1}$. (3)

- The graphs of $f(x) = x^2 4x 5$ and $g(x) = a \cdot 2^x + q$ are sketched below.
 - E and H are the x-intercepts of f.
 - C is the y-intercept of f and lies on the asymptote of g.
 - The two graphs intersect at D, the turning point of f.



- 4.2.1 Write down the y-coordinate of C. (1)
- 4.2.2 Determine the coordinates of D. (2)
- 4.2.3 Determine the values of a and q. (3)
- 4.2.4 Write down the range of g. (1)
- 4.2.5 Determine the values of k for which the value of f(x) k will always be positive.

(2) [**20**]

The graphs of g(x) = 2x + 6 and g^{-1} , the inverse of g, are shown in the diagram below.

- D and B are the x- and y-intercepts respectively of g.
- C is the x-intercept of g^{-1} .
- The graphs of g and g^{-1} intersect at A.

(1) Write down the y-coordinate of B. 5.1 (2) Determine the equation of g^{-1} in the form $g^{-1}(x) = mx + n$. 5.2 (3) Determine the coordinates of A. 5.3 (2) Calculate the length of AB. 5.4 (5) Calculate the area of $\triangle ABC$. 5.5 [13]

R12 000 was invested in a fund that paid interest at m% p.a., compounded quarterly. After 24 months, the value of the investment was R13 459.

Determine the value of m.

(4)

On 31 January 2022, Tino deposited R1 000 in an account that paid interest at 7,5% p.a., compounded monthly. He continued depositing R1 000 on the last day of every month. He will make the last deposit on 31 December 2022.

Will Tino have sufficient funds in the account on 1 January 2023 to buy a computer that costs R13 000? Justify your answer by means of an appropriate calculation.

(4)

- 6.3 Thabo plans to buy a car that costs R250 000. He will pay a deposit of 15% and take out a loan for the balance. The interest on the loan is 13% p.a., compounded monthly.
 - 6.3.1 Calculate the value of the loan.

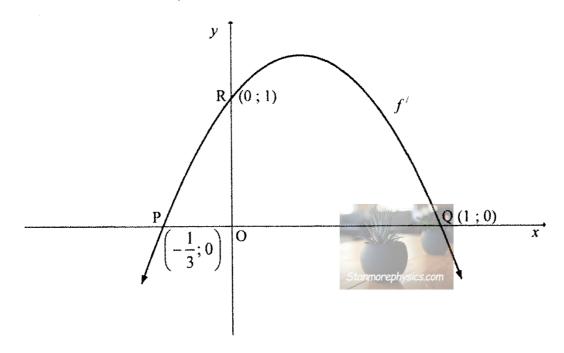
(1)

6.3.2 The first repayment will be made 6 months after the loan has been granted. The loan will be repaid over a period of 6 years after it has been granted. Calculate the MONTHLY instalment.

(5) [14]

QUESTION 7

7.1 Determine
$$f'(x)$$
 from first principles if $f(x) = x^2 + x$. (5)


7.2 Determine
$$f'(x)$$
 if $f(x) = 2x^5 - 3x^4 + 8x$. (3)

7.3 The tangent to $g(x) = ax^3 + 3x^2 + bx + c$ has a minimum gradient at the point (-1; -7). For which values of x will g be concave up? (4)

The graph of $y = f'(x) = mx^2 + nx + k$ is drawn below.

The graph passes the points $P\left(-\frac{1}{3};0\right)$, Q(1;0) and R(0;1).

8.1 Determine the values of m, n and k.

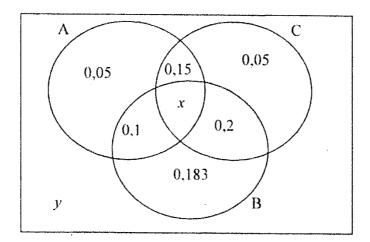
(6)

- 8.2 If it is further given that $f(x) = -x^3 + x^2 + x + 2$:
 - 8.2.1 Determine the coordinates of the turning points of f.

- (3)
- 8.2.2 Draw the graph of f. Indicate on your graph the coordinates of the turning points and the intercepts with the axes.
- (5)

(1)

- Points E and W are two variable points on f' and are on the same horizontal line.
 - h is a tangent to f' at E.
 - g is a tangent to f' at W.
 - h and g intersect at D(a; b).
 - 8.3.1 Write down the value of a.
 - 8.3.2 Determine the value(s) of b for which h and g will no longer be tangents to f'. (2) [17]


Given $f(x) = x^2$.

Determine the minimum distance between the point (10; 2) and a point on f.

[8]

QUESTION 10

10.1 A, B and C are three events. The probabilities of these events (or any combination of them) occurring is given in the Venn-diagram below

If it is given that the probability that at least one of the events will occur is 0,893, calculate the value of:

- (a) y, the probability that none of the events will occur. (1)
- (b) x, the probability that all three events will occur. (1)
- Determine the probability that at least two of the events will take place. (2)
- 10.1.3 Are events B and C independent? Justify your answer. (5)

A four-digit code is required to open a combination lock. The code must be even-numbered and may not contain the digits 0 or 1. Digits may not be repeated.

- 10.2.1 How many possible 4-digit combinations are there to open the lock? (3)
- Calculate the probability that you will open the lock at the first attempt if it is given that the code is greater than 5 000 and the third digit is 2. (5)

TOTAL: 150

[17]

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$

$$A = P(1-i)^t$$

$$A = P(1-ni)$$
 $A = P(1-i)^n$ $A = P(1+i)^n$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq$$

$$S_n = \frac{a(r^n - 1)}{r} \; ; r \neq 1 \qquad S_m = \frac{a}{1 - r} \; ; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y-y_1=m(x-x_1)$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
Stanmore physics.com

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha .\cos \beta + \cos \alpha .\sin \beta$$
 $\sin(\alpha - \beta) = \sin \alpha .\cos \beta - \cos \alpha .\sin \beta$

$$\cos(\alpha+\beta) = \cos\alpha.\cos\beta - \sin\alpha.\sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

Stanmorephysics

These marking guidelines consist of 20 pages. Hierdie nasienriglyne bestaan uit 20 bladsye.

PRIVATE BAG X895, PRETORIA 0001

2022 -11- 13

APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

Copyright reserved/Kopiereg voorbehou

Dan 2022-11-13

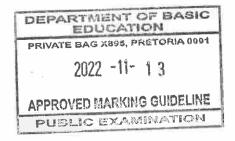
Please turn over/Blaai om asseblief

Mathematics P1/Wiskunde V1

DBE/November 2022

NSC/NSS - Marking Guidelines/Nasienriglyne

NOTE:


- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die nasienriglyne van toepassing.

QUESTION1/VRAAG1

1.1.1	(3x-6)(x+2) = 0	$\checkmark x = 2$
	x = 2 or $x = -2$	$\checkmark x = -2 \tag{2}$
1.1.2	$2x^2 - 6x + 1 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{6 \pm \sqrt{(-6)^2 - 4(2)(1)}}{2(2)}$	✓ correct substitution into correct formula
	x = 2.82 or $x = 0.18$	✓ 2,82 ✓ 0,18 (3)
1.1.3	$x^2 - 90 > x$	
	$\begin{vmatrix} x^2 - x - 90 > 0 \\ 0 & 10 \end{vmatrix}$	✓ standard form
	(x+9)(x-10) > 0 CV: $x = -9$ or $x = 10$	✓ critical values
	-9 10	
	x < -9 or $x > 10$	$\checkmark \checkmark x < -9 \text{ or } x > 10$
	OR/OF	(4)
	$(-\infty; -9)$ or $(10; \infty)$	

Mathematics P1/Wiskunde V1

3

DBE/November 2022

	NSC/NSS – Marking Guidelines/Nasiem	riglyne
1.1.4	$x - 7\sqrt{x} = -12$	
	$x + 12 = 7\sqrt{x}$	✓ isolating the root
	$\left((x+12)^2 = \left(7\sqrt{x}\right)^2\right)$	✓ squaring both sides
	$x^2 + 24x + 144 = 49x$	
	$x^2 - 25x + 144 = 0$	✓ standard form
	(x-16)(x-9) = 0	
	x = 16 or x = 9	✓ both answers (4)
	OR/OF	OR/OF
	$x - 7\sqrt{x} + 12 = 0$	✓ standard form
	$(\sqrt{x}-3)(\sqrt{x}-4)=0$ or let $\sqrt{x}=k$	✓ factors
	$\sqrt{x} = 3 \text{ or } \sqrt{x} = 4$	✓ answers
	x = 9 or $x = 16$	\checkmark both answers for x (4)
1.2	2x - y = 2	
	$y = 2x - 2 \qquad \dots (1)$	✓ eq 1
	$xy = 4 \qquad \dots (2)$	
	(1) in (2):	
	x(2x-2)=4	✓ substitution
	$2x^2 - 2x - 4 = 0$	✓ standard form
	$\begin{cases} x^2 - x - 2 = 0\\ (x - 2)(x + 1) = 0 \end{cases}$	
	x=2 or $x=-1$	✓ x-values
	$y = 2 \qquad y = -4$	\checkmark y-values (5)
	DEPARTMENT	BASIC
	EDUCATIO PRIVATE BAG X865, PRE	170
	2022 -11- 1	
	APPROVED MARKING	GUIDELINE
	PUBLIC EXAM	NOTTAN

Copyright reserved/Kopiereg voorbehou

Mathematics P1/Wiskunde V1

4

NSC/NSS Marking Guidelines/Nasienriglyne			
OR/OF	OR/OF		
$ 2x - y = 2 $ $ x = \frac{1}{2}y + 1 $			
	✓ eq 1		
$xy = 4 \qquad \dots (2)$			
(1) in (2):			
$y\left(\frac{1}{2}y+1\right) = 4$	✓ substitution		
$\frac{1}{2}y^2 + y - 4 = 0$	✓ standard form		
$y^{2} + 2y - 8 = 0$ $(y+4)(y-2) = 0$			
(y+4)(y-2) = 0			
y = -4 or $y = 2$	✓ y-values		
$x = -1 \qquad x = 2$	\checkmark x-values (5)		
OR/OF	OR/OF		
$2x - y = 2 \dots (1)$			
$y = \frac{4}{x} \qquad \dots (2)$	✓ eq 2		
(2) in (1):			
$2x - \frac{4}{x} = 2$	✓ substitution		
$2x^2 - 2x - 4 = 0$ $x^2 - x - 2 = 0$	✓ standard form		
(x-2)(x+1) = 0			
x = 2 or x = -1 $ y = 2 y = -4$	\checkmark x-values \checkmark y-values (5)		
DEPARTMENT OF BASIC EDUCATION PRIVATE BAG X898, PRETORIA 0001 2022 -11- 13 APPROVED MARKING GUIDELINE PUBLIC EXAMINATION			

Mathematic	s P1/ <i>Wiskunde V1</i> 5 NSC/ <i>NSS</i> – Marking Guidelines/ <i>Nasienr</i>	DBE/Novembe
	OR/OF	OR/OF
	$2x - y = 2 \dots (1)$	ONOF
	$x = \frac{4}{y} \qquad \dots (2)$	✓ eq 2
	(2)in (1): $2\left(\frac{4}{y}\right) - y = 2$	✓ substitution
	$8 - y^2 - 2y = 0$	
	$y^{2} + 2y - 8 = 0$ $(y+4)(y-2) = 0$	✓ standard form
	y = -4 or $y = 2$	✓ y-values
	x = -1 $x = 2$	$\checkmark x$ -values (5)
1.3	$2.5^{n} - 5^{n+1} + 5^{n+2} = 2.5^{n} - 5^{n}.5^{1} + 5^{n}.5^{2}$	✓ exp law
	$= 5^{n}(2-5+25)$ $= 5^{n}(22)$	✓ common factor
	$2(5^n(11))$	✓ answer/explanation (3)
	OR/OF	
	Any integer multiplied by an even number will be even	
1.4	$\frac{3^{\nu+1}}{32} = \sqrt{96^x}$	
	$\frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$	$\checkmark \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$
	$3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}}$ $-5 = \frac{5x}{2}$	$\checkmark 3^{y+1}.2^{-5} = 2^{\frac{5x}{2}}.3^{\frac{x}{2}}$
	2 /05/5	$\checkmark x = -2$
	$-5 = \frac{5x}{2}$ $\therefore x = -2$ $y+1 = \frac{x}{2}$ $y+1 = \frac{-2}{2}$ $\therefore y = -2$	
	$\therefore y = -2$	$\checkmark y = -2 \tag{4}$

Mathematics P1/Wiskunde V1	6 DBE/November
OR/OF	– Marking Guidelines/ <i>Nasienriglyne</i> OR/OF
$\frac{3^{y+1}}{32} = \sqrt{96^x}$	
	(
$\left(\frac{3^{y+1}}{2^5}\right)^2 = \left(\sqrt{(96)^x}\right)^2$ $\frac{3^{2y+2}}{2^{10}} = 2^{5x} \cdot 3^x$	$\sqrt{\left(\frac{3^{y+1}}{2^5}\right)^2} = \left(\sqrt{(96)^x}\right)^2$
$\left(\begin{array}{c}2^{5}\end{array}\right)$	
$\frac{3^{2y+2}}{3} = 2^{5x} \cdot 3^x$	
$3^{2y+2} \cdot 2^{-10} = 2^{5x} \cdot 3^x$	$\checkmark 3^{2y+2}.2^{-10} = 2^{5x}.3^x$
-10 = 5x	
$\therefore x = -2$	$\checkmark x = -2$
22	
$2y+2=-2$ $\therefore y=-2$	$\checkmark y = -2 \tag{4}$
y = 2	y = -2 (4)
	[25]

Mathematics P1/Wiskunde V1

7 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2022

QUESTION 2/VRAAG 2

2.1.1	a=14	
	$T_6 = 14r^5 = 448$	$\checkmark T_6 = 14r^5 = 448$
	$r^5 = 32$ Answer only: full marks	
	$\therefore r = 2$ $T_n = 14(2)^{n-1}$	$\checkmark r = 2 \tag{2}$
2.1.2	$T_n = 14(2)^{n-1}$	
	1406	✓ substitution into correct
	$S_n = \frac{14(2^6 - 1)}{2 - 1}$	formula
		$\checkmark S_6 = 882$
	$S_6 = 882$	V 5 ₆ - 862
	114 674 – 882 = 113 792	
	110 700 000 (01) 1)	
	$113792 = 896(2^n - 1)$	
	$128 = 2^n$	$\checkmark 128 = 2^n$
	n=7	(-
	n-r	\checkmark 7 (4)
	OR/OF	OR/OF
	$S_n = \frac{a(r^n - 1)}{r - 1}$	
		✓ substitution into correct
	$114674 = \frac{14(2^n - 1)}{2 - 1}$	formula
	$8191 = 2^n - 1$	
	$2^n = 8192$	$\checkmark 2^n = 8192$
	$n = \log_2 8192$	
	n = 13	$\checkmark n = 13$
	.: 7 more terms must be added to the first 6 terms.	✓ 7 (4)
212	1 07 440 5 44	
2.1.3	$r = \frac{1}{2}$ OR $448r^5 = 14$	$\checkmark r = \frac{1}{2}$
	$\therefore r = \frac{1}{2}$	
	$S = \frac{a}{a}$	
	$S_{\infty} = \frac{a}{1 - r}$	
	4.40	✓ substitution
	$S_{\infty} = \frac{448}{1 - \frac{1}{2}}$ $1 - \frac{1}{2}$ $R = \frac{448}{1 - \frac{1}{2}}$	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(2)
	$S_{\infty} = \frac{448}{1 - \frac{1}{2}}$ $S_{\infty} = 896$	✓ answer (3)
	BUNN SOUS	
	OR MARKING PAIRS A	
	S _∞ = 896 DEPARE BAG YESS. APPROVED MARKING QUIDELINE APPROVED MARKING QUIDELINE APPROVED MARKING QUIDELINE	
	AFRIEL	

Mathematics P1/Wiskunde V1

8

NSC/NSS – Marking Guidelines/	Nasienriglyne
$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$	
$T_1 = \frac{1}{6}$ $T_2 = \frac{1}{3} + \frac{1}{6} = \frac{3}{6}$	$\checkmark T_1 = \frac{1}{6}$
$d = \frac{3}{6} - \frac{1}{6} = \frac{1}{3}$	$\checkmark T_1 = \frac{1}{6}$ $\checkmark d$
$\frac{121}{6} = \frac{n}{2} \left[2 \left(\frac{1}{6} \right) + \left(n - 1 \right) \left(\frac{1}{3} \right) \right]$	✓ substitution
$\frac{121}{3} = n \left[\frac{1}{3} + \frac{1}{3} n - \frac{1}{3} \right]$	
$\frac{121}{3} = \frac{1}{3}n^2$ $121 = n^2$	
$n = 11$ $\therefore k = 10$	✓ value of n ✓ value of k (5)
OR/OF	OR/OF
$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$	
$a=\frac{1}{6}$	$\checkmark a = \frac{1}{6}$
$l = \frac{1}{3}k + \frac{1}{6}$	$\checkmark a = \frac{1}{6}$ $\checkmark l$
n=k+1	$\checkmark n = k + 1$
$S_n = \frac{n}{2} [a+l]$	
$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{6} + \frac{1}{3}k + \frac{1}{6} \right]$	RIVATE BAG 7096, PRETORIA 0001
$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{3} k + \frac{1}{3} \right]$	
$\frac{121}{6} = \frac{k+1}{2} \left[\frac{k+1}{3} \right]$	APPROVED MARKING GUIDELINE
$\frac{121}{6} = \frac{(k+1)^2}{6}$	
$k+1 = \pm \sqrt{121}$ $k+1 = 11$	$\checkmark \frac{121}{6} = \frac{(k+1)^2}{6}$
k = 10	\checkmark value of k (5)
	[14]

Mathematics P1/Wiskunde V1

9 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/November 2022

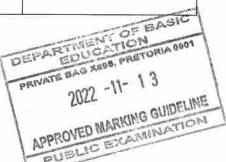
QUESTION 3/VRAAG 3

3.1	3a + b = 7	$\sqrt{3a+b} = 7$	
3.1	3+b=7		(2)
	b = 4	$\checkmark 3 + b = 7$	(2)
	$\theta = 4$		
	OR/OF	OR/OF	
	$T_2 - T_1 = 7$	$\checkmark T_2 - T_1 = 7$	
	4 + 2b + 9 - (1 + b + 9) = 7	✓ substitution	(2)
	b=4		
3.2	$T_n = n^2 + 4n + 9$		
	$T_{60} = (60)^2 + 4(60) + 9$	✓ substitution	
	= 3849 Answer only: full marks	✓ answer	(2)
3.3	14; 21; 30; 41;		
	First difference: 7; 9; 11; Common 2 nd difference: 2	✓ first difference ✓ 2	
	Common 2 difference, 2		
	$T_p = 2p + 5$ Answer only: full marks	$\checkmark 2p+5$	(3)
		_	
	OR/OF	OR/OF	
	First difference: 7;9;11;	✓ first difference	
	$T_n = a + (n-1)d$	√ 2	
	$T_p = 7 + (p-1)(2)$	V 2	
	$T_p = 2p + 5$	$\checkmark 2p+5$	(3)
3.4	157 = 2p + 5	$\checkmark 157 = 2p + 5$	
	p = 76	$\checkmark p = 76$	
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3)
	OR/OF	OR/OF	
		01001	
	$T_{n+1} - T_n = 157$	$\checkmark T_{n+1} - T_n = 157$	
	$(n+1)^2 + 4(n+1) + 9 - (n^2 + 4n + 9) = 157$		
	$n^2 + 2n + 1 + 4n + 4 + 9 - n^2 - 4n - 9 = 157$		
	2n = 152		
	n = 76	$\checkmark n = 76$	
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3)
		7.0	[10]

Mathematics P1/Wiskunde V1

10


DBE/November 2022


NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 4/VRAAG 4

4.1.1	p=-1 and $q=2$	1 / = 1 / = 2	(2)
		$\checkmark p = -1 \checkmark q = 2$	(2)
4.1.2	$\frac{1}{x-1} + 2 = 0$	√ = 0	
	$\begin{vmatrix} x-1 \\ -2x+2=1 \end{vmatrix}$		
	$x = \frac{1}{2}$		
	$\left(\frac{1}{2};0\right)$		
	(2,0)	✓ answer	(2)
4.1.3	$x = \frac{1}{2} - 3$	✓ - 3	
	$= \frac{-5}{2}$ Answer only: full marks	$\checkmark x = \frac{-5}{2}$	(2)
4.1.4	y = x + t	✓ subst (1; 2)	
	2=1+t	./. 1	(2)
4.1.5	1 - 1	$\checkmark t = 1$	(2)
4.1.5	$2 = 1 + t$ $t = 1$ $-2 \le \frac{1}{x - 1}$ Answer only: full marks		
		1 1250	
	$\frac{1}{x-1} + 2 \ge 0$	$\frac{1}{x-1}+2\geq 0$	
	x-1	$\sqrt{x} \le \frac{1}{x}$	
	$\therefore x \le \frac{1}{2} \text{or} x > 1$	$\sqrt{\frac{1}{x-1}} + 2 \ge 0$ $\sqrt{x} \le \frac{1}{2}$ $\sqrt{x} > 1$	(3)
	OR/OF		
	$x \in \left(-\infty; \frac{1}{2}\right] \text{ or } (1; \infty)$		
4.2.1	y = -5	✓ answer	(1)
4.2.2	$x = \frac{-b}{2a} = \frac{-(-4)}{2(1)} = 2$	$\checkmark x = 2$	
	$f(2) = 2^2 - 4(2) - 5 = -9$	$\checkmark y = -9$	(2)
	$\therefore D(2;-9)$		
	OR/OF	OR/OF	
	f'(x) = 2x - 4		
	2x - 4 = 0		
	x = 2	$\checkmark x = 2$	
	$f(2) = 2^2 - 4(2) - 5 = -9$	$\checkmark y = -9$	(2)
	$\therefore D(2;-9)$		

Copyright reserved/Kopiereg voorbehou

Mathematics P1/Wiskunde V1

11

DBE/November 2022

1 Tatilonia	11	ומט	JINO VCIIIOCI
	NSC/NSS – Marking Guidelines	/Nasienriglyne	
4.2.3	q = -5	✓ q = -5	
	$-9 = a(2)^2 - 5$	✓ substitution of	f(2;-9)
	-4=4a		
	a=-1	$\sqrt{a} = -1$	
	$\therefore g(x) = -2^x - 5$		(3)
4.2.4	$y \in (-\infty; -5)$ OR $y < -5; y \in R$	✓answer	(1)
4.2.5	k < - 9	√-9	
		\checkmark - 9 \checkmark $k < -9$	(2)
	-		[20]

A dy

Mathematics P1/Wiskunde V1

 $12 \\ NSC/\textit{NSS}- \textit{Marking Guidelines}/\textit{Nasienriglyne}$

DBE/November 2022

QUESTION 5/VRAAG 5

5.1	g(x) = 2x + 6	,
	y = 6	$\checkmark y = 6 \tag{1}$
5.2	y = 2x + 6	
	x = 2y + 6 Answer only: Full marks	\checkmark swop x and y
	$y = \frac{1}{2}x - 3$ Answer only. Full marks	✓ equation (2)
5.3	$\frac{1}{2}x - 3 = 2x + 6$	✓equating
	x - 6 = 4x + 12	
	3x = -18	$\mathbf{v} x = -6$
	x = -6 $A(-6; -6)$	$\checkmark x = -6$ $\checkmark y = -6$ (3)
	OR/OF	OR/OF
	2x + 6 = x $ x = -6$	✓ equating
	y = -6	$\sqrt{x} = -6$
		$\checkmark y = -6 \tag{3}$
5.4	$AB = \sqrt{(6)^2 + (12)^2}$	✓substitution
	$=\sqrt{180} = 6\sqrt{5} = 13,42$	✓answer (2)
	PRIVATE BAG XB95, PRETORIA 0001 2022 -11- 13 APPROVED MARKING GUIDELINE PUBLIC EXAMINATION	

 ${\bf Copyright\ reserved}/Kopiereg\ voorbehou$

Mathematics P1/Wiskunde V1

13

DBE/November 2022

NSC/NSS - Marking Guidelines/Nasienriglyne B(0;6 -3:0) C(6;0) 5.5 $BC = \sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2}$ ✓ BC $AB = AC = \sqrt{180}$ symmetry of g and g^{-1} \checkmark AB = AC /midpoint (3; 3) $\perp h = (\sqrt{180})^2 - \left(\frac{\sqrt{72}}{2}\right)^2$ $\checkmark \perp h$ (A) $=\sqrt{162}=9\sqrt{2}$ area of $\triangle ABC = \frac{1}{2}BC \times h$ ✓ substitution $= \frac{1}{2} \times \sqrt{72} \times \sqrt{162} = 54 \text{ units}^2$ ✓ answer (A) (5) OR/OF OR/OF $\tan B\hat{D}C = 2$ \checkmark BDC = 63,43° ∴ BDC = 63,43° $\tan D\hat{C}A = \frac{1}{2}$ \therefore DĈA = 26.57° $\checkmark DAC = 36,86^{\circ}$ \therefore DÂC = 36,86° (ext angle triangle) \checkmark AC = $\sqrt{180}$ Area of $\triangle ABC = \frac{1}{2} (\sqrt{180}) (\sqrt{180}) \sin 36,86^{\circ}$ ✓ substitution into the correct formula $= 53,99 \text{ units}^2$ ✓ answer (A) (5)OR/OF OR/OF Area of $\triangle ABC = Area$ of $\triangle BDC + Area$ of $\triangle ADC$ ✓ Areas ($\triangle BDC + \triangle ADC$) $=\frac{1}{2}DC.BO + \frac{1}{2}DC.height$ $\checkmark \frac{1}{2}DC.BO$ $=\frac{1}{2}(9)(6)+\frac{1}{2}(9)(6)$ $\checkmark \frac{1}{2}DC.height$ $= 54 \text{ units}^2$ ✓ substitution ✓ answer (A) [13]

Mathematics P1/Wiskunde V1

14 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/November 2022

APPROVED MARKING OURDELINE PUBLIC EXAMINATION

QUESTION 6/VRAAG 6

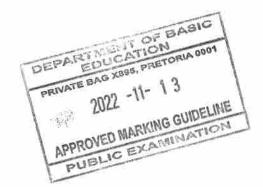
6.1	$A = P(1+i)^n$		
	$13459 = 12000 \left(1 + \frac{m}{400}\right)^8$	✓ 8	
ú		✓ subst into correct formula	
	$\left(1 + \frac{m}{400}\right)^8 = 1{,}121$		
	$1 + \frac{m}{400} = \sqrt[8]{1,121}$	$\sqrt{1+\frac{m}{400}} = \sqrt[8]{1,121}$	
		400	
	$\frac{m}{400} = 0.0144$ $\therefore m = 5.78\%$	(5.70.0/	
		✓ 5,78 % (4)	
6.2	$F = \frac{x[(1+i)^n - 1]}{i}$		
	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0.075 \end{bmatrix}^{12}$	$\sqrt{0.075}$	07-
	$1000\left(1+\frac{3375}{12}\right)$ -1	$\begin{array}{c} \checkmark \frac{0,075}{12} \\ \checkmark 12 \end{array}$	A 000 A
	$F = \frac{1000 \left[\left(1 + \frac{0,075}{12} \right)^{12} - 1 \right]}{\frac{0,075}{12}}$		OF BASIC
	= R12421,22	✓ answer	ONE T
	He won't be able to buy the computer because $R13\ 000 - R12\ 421,22 = R578,78$	✓ conclusion (4)	PRIVATE BAG
	OR/OF		SIVAN
	He won't be able to buy the computer because R12 421,22 < R13 000	America Control	D 2
6.3.1	Loan amount = 85% × R250 000	(1)	
	= R212 500	✓ answer (1)	
	OR/OF Loan amount = $R250\ 000 - (15\% \times R250\ 000)$	OR/OF	
6.3.2	= R212 500	✓ answer (1)	
6.3.2	$A = 212500 \left(1 + \frac{0.13}{12} \right)^5$	$\checkmark A = 212500 \left(1 + \frac{0.13}{12}\right)^5$	
	A = 224 262,53	✓answer	
	$P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right]}{i}$		
	, , , , , , , , , , , , , , , , , , , ,		
	$x \left[1 - \left(1 + \frac{0.13}{12} \right)^{-67} \right]$	✓ substitution into	
	$224\ 262,53 = \frac{x \left[1 - \left(1 + \frac{0,13}{12}\right)^{-67}\right]}{\frac{0,13}{2}}$	correct formula	
	$\therefore x = R4724,96$	✓ -67	
		✓ answer (5) [14]	
		[17]	1

Mathematics P1/Wiskunde V1

15 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2022

QUESTION 7/VRAAG 7


	n penalty only in Question 7.1	
7.1	$f(x) = x^2 + x$	
	$\int_{h\to 0}^{h} f(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$	
	11	
	$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) - (x^2 + x)}{h}$	✓ substitution into
		the formula $\checkmark x^2 + 2xh + h^2 + x + h$
	$f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$= \lim_{h \to 0} \frac{2xh + h^2 + h}{h}$	$\checkmark 2xh + h^2 + h$
	$=\lim_{h\to 0}\frac{h(2x+h+1)}{h}$	✓ common factor
	$\therefore f'(x) = 2x + 1$	✓answer (5)
	OR/OF	OR/OF
	$f(x) = x^2 + x$	
	$f(x+h) = (x+h)^2 + (x+h) = x^2 + 2xh + h^2 + x + h$	$\checkmark x^2 + 2xh + h^2 + x + h$
	$f(x+h)-f(x) = x^2 + 2xh + h^2 + x + h - x^2 - x$	
	$=2xh+h^2+h$	$\checkmark 2xh + h^2 + h$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$= \lim_{h \to 0} \frac{2xh + h^2 + h}{h}$	✓ substitution into the formula
	7	the formula
	$=\lim_{h\to 0}\frac{h(2x+h+1)}{h}$	✓ common factor
	$\therefore f'(x) = 2x + 1$	✓answer (5)
7.2	$f(x) = 2x^5 - 3x^4 + 8x$	$\checkmark 10x^4$
	$f'(x) = 10x^4 - 12x^3 + 8$	$\sqrt{-12x^3}$
7.2	$g(x) = ax^3 + 3x^2 + bx + c$	√ 8 (3)
7.3	$g(x) = ax^{2} + 6x + b$ $g'(x) = 3ax^{2} + 6x + b$	$\int g'(x) = 3ax^2 + 6x + b$
	g''(x) = 6ax + 6	√
	/ Det /A	g''(-1) = 6a(-1) + 6 = 0
	10.2	$\checkmark a = 1$
	For concave up $g''(x) > 0$	
	6x+6>0	
	$g''(-1) = 6a(-1) + 6 = 0$ $\therefore a = 1$ For concave up $g''(x) > 0$ $6x + 6 > 0$ $x > -1$	$\checkmark x > -1 \tag{4}$
	out of the state o	
	For concave up $g''(x) > 0$ 6x + 6 > 0 x > -1	

Mathematics P1/Wiskunde V1

16

NSC/NSS – Marking Guidelines/Nasienriglyne			
OR/OF	7	OR/OF	
Min gradient at $(-1; -7)$ Since g is concave up $x > -1$ OR/OF	at $x = -1$ - point of inflection and g will be positive cubic hence $a > 0$	✓ point of inflection ✓ $a > 0$ ✓ $x > -1$ OR/OF	on (4)
Since g is concave up $x > -1$ Answer of	Since g is concave up $x > -1$ only: $\frac{1}{4}$	✓ pos graph ✓ point of inflection ✓ $x > -1$	n (4)
			[12]

Mathematics P1/Wiskunde V1

17

DBE/November 2022

NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 8/VRAAG 8

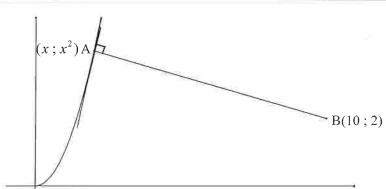
9		
8.1	$f'(x) = mx^2 + nx + k$	()
	$f'(x) = m\left(x + \frac{1}{3}\right)(x - 1)$	\checkmark substitution of $\left(-\frac{1}{3};0\right)$
	$1 = m\left(0 + \frac{1}{3}\right)(0 - 1)$	and (1;0) ✓ substitution of (0;1)
	$1 = -\frac{1}{3}m$	
	$\therefore m = -3$	$\sqrt{m} = -3$
	$f'(x) = -3\left(x + \frac{1}{3}\right)(x-1)$	
	$\int f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$	$\checkmark f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$
	$\int f'(x) = -3x^2 + 2x + 1$	
	$\therefore n=2$	$ \begin{array}{c} \checkmark n = 2 \\ \checkmark k = 1 \end{array} \tag{6} $
	$\therefore k = 1$	$\checkmark k = 1 \tag{6}$
	OR/OF	OR/OF
	k=1	$\checkmark k = 1$
	$0 = m + n + 1$ and $\frac{1}{9}m - \frac{1}{3}n + 1 = 0$	
	$m+n=-1 \qquad (1)$	$\sqrt{m+n}=-1$
	$m - 3n = -9 \tag{2}$	$\checkmark m-3n=-9$
	(1) - (2)	1
	4n = 8	$\checkmark 4n = 8$
	$\therefore n=2$	$\checkmark n = 2$
	m+2=-1	(0)
0.0.1	$\therefore m = -3$	$\checkmark m = -3 \tag{6}$
8.2.1	$f(x) = -x^3 + x^2 + x + 2$	
	$f\left(-\frac{1}{3}\right) = \frac{49}{27} = 1.81$	✓ <i>x</i> -coordinates of the TP
	$T.P\left(-\frac{1}{3}; \frac{49}{27}\right)$ $f(1) = 3$ $T.P(1; 3)$	$\checkmark \text{T.P}\left(-\frac{1}{3}; \frac{49}{27}\right)$
	f(1)=3 T.P(1;3)	
	T.P(1; 3)	$\checkmark \text{T.P(1;3)} \tag{3}$
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	N. B.	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Copyright reserved/Kopiereg voorbehou

Mathematics P1/Wiskunde V1

18

	NSC/NSS – Marking Guidelines/Nasien	riglyne	
8.2.2	$f(x) = -x^3 + x^2 + x + 2$		
	$-x^3 + x^2 + x + 2 = 0$		
	$(x-2)(-x^2-x-1)=0$		
	x = 2 or no solution	$\checkmark x = 2$	
	(1;3)	✓ one x -intercept	
	$\left(-\frac{1}{2};1,81\right)$	✓ two turning points	
	2	✓y-intercept	
		✓ shape: neg cubic	(5)
8.3.1	$a = \frac{-\frac{1}{3} + 1}{2}$		
	$=\frac{1}{3}$	✓ answer	(1)
	OR/OF	OR/OF	
	$f'(x) = -3x^2 + 2x + 1$		
	f''(x) = -6x + 2		
	f''(a) = -6a + 2 = 0		
	-6a = -2		
	$a=\frac{1}{3}$	✓ answer	(1)
8.3.2	$b < \frac{4}{3}$ units	$\checkmark \frac{4}{3}$ $\checkmark b < \frac{4}{3}$	
		$\checkmark b < \frac{4}{3}$	(2)
			[17]



Mathematics P1/Wiskunde V1

19 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/November 2022

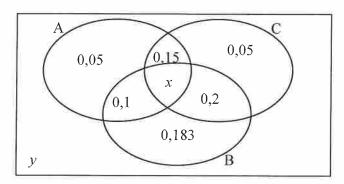
QUESTION9/VRAAG9

9.1	Any point on $f:(x;x^2)$	$\checkmark(x;x^2)$
	distance = $\sqrt{(x-10)^2 + (x^2-2)^2}$	✓ substitution
	$= \sqrt{x^2 - 20x + 100 + x^4 - 4x^2 + 4}$	✓ simplification
	$= \sqrt{x^4 - 3x^2 - 20x + 104}$	✓ answer
	For min distance	
	$\frac{d}{dx}\left(x^4 - 3x^2 - 20x + 104\right) = 0$	
	$4x^3 - 6x - 20 = 0$	$4x^3 - 6x - 20$
	$(x-2)(4x^2+8x+10)=0$	✓ derivative = 0
	$\Delta = 8^2 - 4(4)(10) = -96$: no roots	
	$\therefore x = 2$	$\checkmark x = 2$
	$d = \sqrt{2^4 - 3(2)^2 - 20(2) + 104} = 2\sqrt{17} = 8,25$	✓answer (A) (8)

DEPARE BACKONS PERFORMANCE CHILDELINE
APPROVED MARKING CHILDELINE
APPROVED MARKING CHILDELINE
APPROVED MARKING CHILDELINE

9.2	$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{x^2 - 2}{x - 10}$	✓ m _{AB}
	$\therefore m_{\tan g} = -\frac{x - 10}{x^2 - 2}$ $f'(x) = 2x$	$\checkmark m_{\tan g} = -\frac{x - 10}{x^2 - 2}$ $\checkmark f'(x) = 2x$
	f'(x) = 2x	$\int f'(x) = 2x$
1	$\therefore 2x = -\frac{x - 10}{x^2 - 2}$	✓ equating
1 1	$-2x^3 + 4x = x - 10$	
1 1	$2x^3 - 3x - 10 = 0$ $x = 2$	✓ standard form $✓ x = 2$
	$y = (2)^2 = 4$	
	$\therefore AB = \sqrt{(2-10)^2 + (4-2)^2}$	✓ substitute into distance
	$=2\sqrt{17}=8,25$	✓answer (A) (8)
		[8]

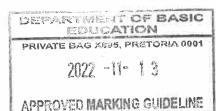
Copyright reserved/Kopiereg voorbehou


Mathematics P1/Wiskunde V1

2.0

NSC/NSS - Marking Guidelines/Nasienriglyne

DBE/November 2022


QUESTION 10/VRAAG 10

-		
10.1.1(a)	y = 1 - 0.893 = 0.107 (0.11)	$\checkmark y = 1 - 0.893$
		(1)
10.1.1(b)	x = 0.893 - 0.733	$\checkmark x = 0.893 - 0.733$
	= 0,16	(1)
10.1.2	P(at least 2 events) = $0.1 + 0.15 + 0.16 + 0.2$	✓ values
	= 0,61 Answer only: Full Marks	✓ answer
		(2)
10.1.3	P(B) = 0.643	\checkmark P(B) = 0,643
	P(C) = 0.56	$\checkmark P(C) = 0.56$
	P(B and C) = 0.36	✓ $P(B \text{ and } C) = 0.36$
	$P(B) \times P(C) = 0.643 \times 0.56 = 0.36$	$\checkmark P(B) \times P(C) = 0.36$
	$\therefore P(B \text{ and } C) = P(B) \times P(C)$	✓ independent because
	∴ B and C are independent	$P(B \text{ and } C) = P(B) \times P(C)$
	B and C are macpendent	(5)
10.2.1	$7 \times 6 \times 5 \times 4 = 840$	√ 4√ 7
10.2.1	7/0/3/4-040	$\checkmark 7 \times 6 \times 5 \times 4 = 840$
10.2.2		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.2.2	start with 5, 7, 9 or start with 6 or start with 8	$\checkmark (3 \times 5 \times 1 \times 3) = 45$
	$(3\times5\times1\times3)+(1\times5\times1\times2)+(1\times5\times1\times2)$	$\checkmark (1 \times 5 \times 1 \times 2) = 10$
	=45+10+10	$\checkmark (1 \times 5 \times 1 \times 2) = 10$
	= 65	√65
	p 65 13	✓ answer
	$P = \frac{65}{840} = \frac{13}{168} = 0.08$	(5)
	040 100	
	OR/OF	OR/OF
	ends in 4 or ends in 6 or ends in 8	$\checkmark (5 \times 5 \times 1 \times 1) = 25$
	$(5\times5\times1\times1)+(4\times5\times1\times1)+(4\times5\times1\times1)$	$\checkmark (4 \times 5 \times 1 \times 1) = 20$
	=25+20+20	$\checkmark (4 \times 5 \times 1 \times 1) = 20$
	= 65	√ 65
	$P = \frac{65}{100} = \frac{13}{100} = 0.08$	✓ answer
	$P = \frac{65}{840} = \frac{13}{168} = 0.08$	(5)
	41	[17]

TOTAL/TOTAAL: 150

PUBLIC EXAMINATION