Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

PREPARATORY EXAMINATIONS

SEPTEMBER 2023

MARKS: 150 Stormorephysics.com

TIME: 3 hours

N.B. This question paper consists of 12 pages and 1 information sheet.

This paper has an Answer Booklet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer **ALL** the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show **ALL** calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 5. Answers only will **NOT** necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to **TWO** decimal places, unless stated otherwise.
- 8. Diagrams are **NOT** necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

Mr Siphokazi supplements his pension by mowing lawns for customers. He measures the areas (x) (in m^2) of 12 of his customers' lawns and the time (y) in minutes, it takes him to mow these lawns. He works 8 hours a day. He recorded the data.

_			Ц										
ſ	Area (x)	360	120	845	602	1 190	530	245	486	350	1 005	320	250
L	(m²)		3										
١	Time (y)	50	28	130	75	120	95	55	70	48	110	55	60
L	(minutes)												

1.1	Determine the equa	ition of the least s	quares regression	line. (3)

- 1.2 Calculate the value of r, the correlation coefficient for the data. (2)
- 1.3 Given that Mr Siphokazi charges a flat call out fee of R150, as well as R50 per half hour (or part thereof), estimate the charge for mowing a customer's lawn that has an area of 560 m².

- 1.4 The local high school wants Mr Siphokazi to mow their rugby field which is rectangular, 100 meters long by 70 meters wide.
 - 1.4.1 Use the regression equation found in 1.1 to calculate the time it would take to mow this area. (1)
 - 1.4.2 Is it possible for him to complete this job in a day?
 Give a reason for your answer. (1)

[10]

The following table gives the frequency distribution of the daily travelling time (in minutes) from home to work for the employees of a certain company.

Daily travelling time x (in minutes)	Number of employees (f)	Midpoint of Interval	
$0 \le x < 10$	20		
$10 \le x < 20$	35		
$20 \le x < 30$	30		
$30 \le x < 40$	10		
$40 \le x < 50$	5		

- 2.1 Calculate the estimated mean travelling time. (3)
- 2.2 Write the modal class of the data. (2)
- 2.3 An ogive was drawn for the given data.

 Construct a box-whisker plot for the data in the ANSWER BOOK. (3)

- 2.4 State whether the following statements are TRUE or FALSE.
 - 2.4.1 The distribution of these travelling times is positively skewed. (1)
 - 2.4.2 The inter-quartile range for the data is 25. (1)
 - 2.4.3 35 employees take less than 20 minutes. (1) [11]

Trapezium ABCD is drawn below with AD || BC is drawn. The coordinates of the vertices are A(1; 7), B(p; q), C(-2; -8) and D(-4; -3). BC intersects the x – axis at F. DĈB = α . AD intersects the y – axis at E.

- 3.1 Calculate the gradient of AD. (2)
- 3.2 Determine the equation of BC in the form y = mx + c. (3)
- 3.3 Determine the coordinates of F. (2)
- 3.4 AMCD is a parallelogram, with M on BC. Determine the coordinates of M. (2)
- 3.5 Show that $\alpha = 48,37^{\circ}$. (4)
- 3.6 Calculate the area of ΔDCF . (4) [17]

- 4.1 The equation of a circle is $x^2 + y^2 8x + 6y = 15$.
 - 4.1.1 Show that P(2; -9) lies on the circle. (2)
 - 4.1.2 Determine the equation of the tangent to the circle at point P(2; -9). (6)
 - 4.1.3 A tangent is drawn from Q(-10; 12) to the circle. Calculate the length of the tangent.
- 4.2 The circle, with centre T, and equation $(x-3)^2 + (y+2)^2 = 25$ is given below. B is the y – intercept of the circle.

- 4.2.1 Determine the coordinates of B. (4)
- 4.2.2 Write down the coordinates of C, if C is the reflection of B in the line x = 3. (2)
- 4.2.3 Another circle with centre M and equation $(x 12)^2 + (y 10)^2 = 100$ is given.
 - (a) Calculate the distance, TM, between the centres. (2)
 - (b) Do these circles touch or intersect each other? Justify your answer. (2)

 [22]

5.1 If $\sin 38^{\circ} = p$, determine the value of the following, without using a calculator:

$$5.1.1 \cos 218^{\circ}$$
 (3)

$$5.1.2 \cos 14$$
 (3)

$$5.1.3 \quad \sin \overline{26^{\circ} \cos 26^{\circ}} \tag{2}$$

5.2 Evaluate the following trigonometric expression without using a calculator:

$$\frac{2 \sin 165^{\circ} \cos 195^{\circ}}{\cos 45^{\circ} \sin 15^{\circ} - \cos 15^{\circ} \sin 45^{\circ}}$$
 (5)

5.3 Given: $K = \sqrt{3}\cos x + \sin x$.

5.3.1 Write K in the form of
$$t \sin(x+\theta)$$
. (3)

5.3.2 Hence, calculate the value of t and
$$\theta$$
. (1)

5.4 Prove the identity:

$$\frac{2 \tan \theta - \sin 2\theta}{2 \sin^2 \theta} = \tan \theta \tag{6}$$

5.4.2 Hence, determine the values of θ , $\theta \in [180^{\circ}; 360^{\circ}]$ which will make the (2) above identity undefined.

QUESTION 6

6.1 Sketch the graphs of $f(x) = 2 \sin x$ and $g(x) = \cos(x - 30^{\circ})$ for $x \in$ [-180°; 180°] on the grid in the ANSWER BOOK. Indicate the intercepts with the axes and also the turning points.

(6)

[26]

6.2 Use your graphs to answer the following questions:

6.2.1 Write down the period of
$$g$$
. (1)

6.2.2 Determine the values of x for which
$$f(x) > g(x)$$
. (4)

6.2.3 Write down the values of x for which
$$f(x) = 1.5 + g(x)$$
. (2)

[13]

In the diagram below, PQ is a vertical mast. R and S are two points in the same horizontal plane as the foot of the mast, Q. $Q\widehat{R}S = \alpha$, $Q\widehat{S}R = \beta$, SR = 8 - 2x and SQ = x. The angle of elevation of P, the top of the mast from R, is θ .

7.1 Express PQ in terms QR and a trigonometric ratio of θ . (1)

7.2 Show that:
$$PQ = \frac{x \sin \beta \tan \theta}{\sin \alpha}$$
 (4)

7.3 If $\beta = 60^{\circ}$, show that the area of $\Delta QSR = 2\sqrt{3}x - \frac{\sqrt{3}}{2}x^2$. (3)

7.4 Determine the value of x for which the area of $\triangle QSR$ will be at a maximum. (3)

[11]

8.1 In the diagram O is the centre of the circle and M is a point on the circumference of the circle. Are AB subtends AÔB at the centre of the circle and M at the circumference of the circle.

Use the diagram to prove the theorem that states that $A\hat{O}B = 2\hat{M}$. (5)

8.2 From a point A outside the circle, center O, two tangents AD and AV are drawn. AO and VD intersect at M. BOD is a diameter of the circle. BV and VO are drawn. $V\hat{A}D = 40^{\circ}$

8.2.1 Prove that quadrilateral VODA is cyclic.

8.2.2 Calculate the magnitude of \hat{O}_1 . (2)

8.2.3 Prove that BV \parallel OA. (5)

[14]

(2)

9.1 Complete the following statement: A line drawn parallel to one side of a triangle ... (2)

In the figure, KL \parallel QR. M and N are points on QR such that KN \parallel PR and LM || PQ. PK = 3 units, PL = 4 units, LR = 6 units and MN = 1.8 units.

9.2.1 Calculate the length of KQ. (2)

9.2.2 Prove that
$$QM = NR$$
. (2)

[6]

In the figure, two circles intersect at A and B. AB produced to M bisects QÂR. Tangents MQ and MR meet the circles at Q and R respectively. QBR is a straight line. AQ and AR

are drawn.

Prove:

10.1
$$\Delta MQA \parallel \Delta MBQ$$
. (3)

$$10..2 MR^2 = AM.MB (5)$$

$$\frac{MQ^2}{MR^2} = 1 \tag{4}$$

[12]

11 \triangle ABC is right angled at C. ED \perp AB with E on CB and D on AB. AC = 4,8 cm and AB = 8 cm. AD = DB.

- 11.1 Calculate BC, correct to 1 decimal digit. (2)
- 11.2 Complete: $\Delta BAC \parallel \dots$ (1)
- 11.3 Hence, or otherwise calculate the area of ADEC. (5)

[8]

GRAND TOTAL: 150

INFORMATION SHEET: MATHEMATICS INLIGTING BLADSY

$$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$$

$$A = P(1 + ni) \qquad A = P(1 - ni) \qquad A = P(1 - i)^n \qquad A = P(1 + i)^n$$

$$T_n = a + (n - 1)d \qquad S_n = \frac{n}{2}(2a + (n - 1)d)$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; \qquad r \neq 1 \qquad S_n = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1 + i)^n - 1]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc.\cos A \qquad area \ \Delta ABC = \frac{1}{2} ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha.\cos \beta + \cos \alpha.\sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha.\cos \beta - \cos \alpha.\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha.\cos \beta - \sin \alpha.\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha.\cos \beta - \sin \alpha.\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha.\cos \beta + \cos \alpha.\sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha.\cos \beta + \cos \alpha.\sin \beta$$

$$\sin(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\sin(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta$$

$$\sin(\alpha - \beta) = \cos \alpha.\cos \beta$$

$$\cos(\alpha - \beta)$$

Downloaded from Stanmorephysics.com FINAL

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

MARKING GUIDELINE

PREPARATORY EXAMINATIONS

tarmorephysics.com

EPTEMBER 2023

MARKS: 150

This marking guideline consists of 14 pages.

NB: CA APPLIES TO ALL SUB-QUESTIONS IN THIS MARKING GUIDELINE.

QUESTION 1

	100	T .	
1.1	a = 34,90	\checkmark A Value of a	
	b = 0.08	\checkmark A Value of b	
	y = 34,90 + 0,08x	✓CA Equation	(3)
	Answer only: Full Marks		
1.2	r = 0.88	✓A✓A Answer	(2)
1.3	y = 34,90 + 0,08x		
	y = 34,90 + 0,08(560)	✓CA Substitution	
	y = 79.7 minutes = 1.33 hours	✓CA 79,7 minutes	
	Total cost = $R150 + R150 = R300$	✓CA Answer	(3)
1.4.1	Area = $100 \times 70 = 7000$ square meters		
	y = 34,90 + 0,08(7000)		
	y = 594.9 minutes = 9.92 hours	✓CA Calculation	(1)
1.4.2	No. The time taken will exceed his daily 8 hour working hours.	✓CA Justification	(1)
			[10]

Daily travelling time x(in minutes)	Number of employees (f)	Midpoint of Interval (x)	f.x
$0 \le x < 10$	20	5	100
$10 \le x < 20$	35	15	525
$20 \le x < 30$	30	25	750
$30 \le x < 40$	10	35	350
$40 \le x < 50$	5	45	225
Total	100		1950

Daily travelling time (in minutes)

0	Daily travelling time (III IIIIIIute	#S)	
2.1	Estimated Mean = $\frac{1950}{100}$ = 19,5	✓A ✓A	1950 100	
	Answer only: Full Marks	✓CA	Answer	(3)
2.2	$10 \le x < 20$	✓A✓.	A Answer	(2)
2.3	See Diagram	✓A	Minimum and Maximum value	
		✓A	1 st and 3 rd Quartiles	
		✓A	2 nd Quartile	(3)
	Five number summary: 0; 12; 18; 26; 50 Accept: ±1 deviation on quartiles	o		

2.4.1	True	✓A	Answer	(1)
2.4.2	False	✓A	Answer	(1)
2.4.3	True	✓A	Answer	(1)
				[11]

Mathemetics P2 Downloaded from Stanperephysics in Com September 2023 Preparatory Examination

$0 = 2x - 4$ $x = 2$ $F(2;0)$ $M(3;2)$ 3.4 3.5 $m_{CD} = \frac{-3+8}{-4+2} = \frac{5}{-2}$ $Inclination of CD:$ $\tan \theta_1 = 180^{\circ} - 68,2^{\circ} = 111,8^{\circ}$ $\tan \theta_2 = 2$ $\theta_2 = 63,43^{\circ}$ $Therefore$ $\alpha = 111,8^{\circ} - 63,43^{\circ}$ $\checkmark CA x - value$ $\checkmark A x - value$ $\checkmark A Gradient of CD$ $\checkmark A Inclination of CD$	(2)
$F(2;0)$ $M(3;2)$ $M(3;2)$ $M_{CD} = \frac{-3+8}{-4+2} = \frac{5}{-2}$ $Inclination of CD:$ $\tan \theta_1 = 180^\circ - 68,2^\circ = 111,8^\circ$ $\tan \theta_2 = 2$ $\theta_2 = 63,43^\circ$ $Therefore$ $\alpha = 111,8^\circ - 63,43^\circ$ $A x - value$ $A y - value$ $A Gradient of CD$ $A Inclination of CD$ $A Inclination of CF$	
$M(3;2)$ 3.4 3.5 $m_{CD} = \frac{-3+8}{-4+2} = \frac{5}{-2}$ $Inclination of CD:$ $\tan \theta_1 = 180^\circ - 68,2^\circ = 111,8^\circ$ $\tan \theta_2 = 2$ $\theta_2 = 63,43^\circ$ $Therefore$ $\alpha = 111,8^\circ - 63,43^\circ$ $A = 111,8^\circ - 63,43^\circ$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3.4 3.5 $m_{CD} = \frac{-3+8}{-4+2} = \frac{5}{-2}$ Inclination of CD: $\tan \theta_1 = 180^\circ - 68.2^\circ = 111.8^\circ$ Inclination of CF: $\tan \theta_2 = 2$ $\theta_2 = 63.43^\circ$ Therefore $\alpha = 111.8^\circ - 63.43^\circ$ A Gradient of CD ✓ A Inclination of CD	
Inclination of CD: $\tan \theta_1 = 180^\circ - 68,2^\circ = 111,8^\circ$ $Inclination of CF:$ $\tan \theta_2 = 2$ $\theta_2 = 63,43^\circ$ Therefore $\alpha = 111,8^\circ - 63,43^\circ$ $\checkmark A Inclination of CF$ $\checkmark A Inclination of CF$	
$\tan \theta_1 = 180^\circ - 68,2^\circ = 111,8^\circ$ $Inclination of CF:$ $\tan \theta_2 = 2$ $\theta_2 = 63,43^\circ$ $Therefore$ $\alpha = 111,8^\circ - 63,43^\circ$ $\checkmark A Inclination of CF$ $\checkmark A subtraction of the angles$	
Inclination of CF: $\tan \theta_2 = 2$ $\theta_2 = 63,43^{\circ}$ Therefore $\alpha = 111,8^{\circ} - 63,43^{\circ}$ $A \text{Inclination of CF}$ $A \text{Subtraction of the angles}$	
$\tan \theta_2 = 2$ $\theta_2 = 63,43^{\circ}$ Therefore $\alpha = 111,8^{\circ} - 63,43^{\circ}$ ✓ A subtraction of CF	
$\theta_2 = 63,43^{\circ}$ Therefore $\alpha = 111,8^{\circ} - 63,43^{\circ}$ $A \text{subtraction of the angles}$	
Therefore $\alpha = 111.8^{\circ} - 63.43^{\circ}$	
$\alpha = 111.8^{\circ} - 63.43^{\circ}$ A subtraction of the angles	
$\alpha = 111.8^{\circ} - 63.43^{\circ}$	
$=48,37^{\circ}$	
OR	
DF = $\sqrt{(2 + 4)^2 + (0 + 3)^2}$ \checkmark A Distance of DF = $\sqrt{45}$	
$DC = \sqrt{29}$ \checkmark A Distance of DC	
$CF = \sqrt{80}$ \checkmark A Distance of CF	
$(\sqrt{45})^2 = (\sqrt{29})^2 + (\sqrt{80})^2 - 2\sqrt{29}\sqrt{80}\cos\alpha$ \checkmark A subst. into cosine rule	(4)
$\alpha = 48,37^{\circ}$	
26 DG (62 + 622 + 622 + 622 + 64 + 65 CD)	
3.6 DC = $\sqrt{(-3+8)^2 + (-4+2)^2} = \sqrt{29}$ A Length of CD	
FC = $\sqrt{(0+8)^2 + (2+2)^2} = \sqrt{80}$	
Area of $\triangle DCF = \frac{1}{2}(\sqrt{29})(\sqrt{80}) \sin 48{,}37^{\circ}$ $\checkmark CA$ Substitution into area formula	
= 18 square units. ✓CA Answer	
	(4)

4.1.1	$x^2 + y^2 - 8x + 6y = 15$		
	LHS = $(2)^2 + (-9)^2 - 8(2) + 6(-9)$	✓A Subst. of point	
	= 4 + 81 + 16 - 54	✓A Simplification	
	= 15		(2)
112	= RHS		
4.1.2	Centre: C(4; -3) P(2; -9) $m_{Radius} = \frac{-3+9}{4-2} = \frac{6}{2} = 3$ Equation of Tangent: $y = mx + c$	✓A writing the equation as $(x-4)^2 + (y+3)^2 = 40$ ✓CA Centre of circle ✓CA Gradient of radius ✓CA Gradient of tangent	(6)
	$-9 = -\frac{1}{3}(2) + c$ 25	Substitution	
	$-\frac{1}{3} = c$ 1 25	✓CA Answer	
412	$y = -\frac{1}{3}x - \frac{1}{3}$	/CA Calantation of a2	
4.1.3	$r^2: (x-4)^2 + (y+3)^2 = 40$	✓CA Calculation of r^2	
	$r^2 = 140^{\text{orephysics}}$		
	$(distance\ Q\ to\ the\ centre)^2 = (-10-4)^2 + (12+3)^2$	✓CA distance calculation	
	= 421	✓CA Tangent calculation	
	$(\text{Length of tangent})^2 = 421 - 40 = 381$		(4)
	Length of tangent = $\sqrt{381}$	✓CA Answer	

Mathematics P2 Downloaded from Stanperenty Signature September 2023 Preparatory Examination

4.2.1	$(x-3)^2 + (y+2)^2 = 25$			
	Let $x = 0$:			
	$(0-3)^2 + (y+2)^2 = 25$	✓A	Letting $x = 0$	
	$(y+2)^2 = 16$			
	$y + 2 = \pm 4$	✓A	Simplification	
	y = -6 or $y = 2$	✓ CA	y – values	
	B(0;2)	✓ CA	Answer	(4)
4.2.2	C(6; 2)	✓CA	x – value	(2)
		✓CA	y – value	
4.2.3				
(a)	T(3;-2) and $M(12;10)$	✓A	Coordinates of M	
	$TM^2 = (12-3)^2 + (10+2)^2 = 225$			
	TM = 15 units	✓CA	Answer	(2)
(b)	Radius, center $T = 5$ units and Radius, center $M = 10$ units	✓CA	Sum of radii	
	Sum of radii = 15 units			
	Circles touch.	✓ CA	Justification	(2)
	TM= Sum of radii			
				[22]

QUESTION 5

Mathemetics P2 Preparatory Examination Stanper Parking Single Income September 2023 Preparatory Examination

5.1.2	14°		
3.1.2	$\begin{vmatrix} \cos 14^{\circ} \\ = \cos(52^{\circ} - 38^{\circ}) \end{vmatrix}$	✓A Writing as difference	
	$= \cos 52^{\circ} \cos 38^{\circ} + \sin 52^{\circ} \sin 38^{\circ}$	✓A Expansion	
	$= {p \choose 1} \left(\frac{\sqrt{1-p^2}}{1} \right) + \left(\frac{\sqrt{1-p^2}}{1} \right) \left(\frac{p}{1} \right)$ $= 2p\sqrt{1-p^2}$	✓CA Answer	
	OR		(3)
	$\cos 24^\circ = \sin 76^\circ$	✓ sin 76°	
	$=\sin 2(38^\circ)$		
	$= 2\sin 38^{\circ}\cos 38^{\circ}$		
	$=2p\sqrt{1-p^2}$	✓ double angle	
	,	✓answer	
5.1.3	sin 26° cos 26°		
	$=\frac{1}{2}\sin 52^{\circ}$	✓A Double angle	
	$=\frac{1}{2}\sqrt{1-p^2}$	✓CA Answer	(2)
5.2	2 sin 165° cos 195°		
	$\cos 45^{\circ} \sin 15^{\circ} - \cos 15^{\circ} \sin 45^{\circ}$		
	$= \frac{2 \sin 15^{\circ}. (-\cos 15^{\circ})}{\cos 45^{\circ} \sin 15^{\circ} - \cos 15^{\circ} \sin 45^{\circ}}$	✓A −cos 15°	
	$=\frac{-2\sin 30^{\circ}}{\sin(15^{\circ}-45^{\circ})}$	\checkmark A $-2 \sin 30^{\circ}$ \checkmark A $\sin(15^{\circ} - 45^{\circ})$	
	$=\frac{-2\sin 30^\circ}{\sin(-30^\circ)}$		
	$=\frac{-2\sin 30^{\circ}}{-\sin 30^{\circ}}$	✓A -sin 30°	
	= 2	✓CA Answer	(5)
5.3.1	$K = \sqrt{3}\cos x + \sin x$		
	$K = 2\left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right)$	$\checkmark A \qquad 2\left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right)$	
	$K = 2(\sin 60^{\circ} \cos x + \cos 60^{\circ} \sin x)$	\checkmark A $\sin 60^{\circ}$ and $\cos 60^{\circ}$	
	$K = 2\sin(60^{\circ} + x)$	$\checkmark A \qquad 2 \sin (60^{\circ} + x)$	(3)
		-	

Mathemetics P2 Preparatory Examination Stanger Parking Stanger Com September 2023 Preparatory Examination

5.3.2	$t = 2$ and $\theta = 60^{\circ}$	✓CA t – value and $\theta = 60^{\circ}$	(1)
5.3.3	2	✓CA Answer	(1)
5.4.1	LHS = $\frac{2 \tan \theta - \sin 2\theta}{2 \sin^2 \theta}$ $= \frac{2 \left(\frac{\sin \theta}{\cos \theta}\right) - 2 \sin \theta \cos \theta}{2 \sin^2 \theta} \times \frac{\cos \theta}{\cos \theta}$ $= \frac{2 \sin \theta - 2 \sin \theta \cos^2 \theta}{2 \sin^2 \theta \cos \theta}$ $= \frac{2 \sin \theta \left(1 - \cos^2 \theta\right)}{2 \sin^2 \theta \cos \theta}$ $= \frac{2 \sin \theta \cdot \sin^2 \theta}{2 \sin^2 \theta \cdot \cos \theta}$ $= \frac{\sin \theta}{\cos \theta}$	✓A	
	$= \tan \theta$ $= LHS$		(6)
5.4.2	$2\sin^2\theta = 0$		
	$\sin \theta = 0$ $\therefore \theta = 180^{\circ} \text{ and } 360^{\circ}$ $\theta = 270^{\circ}$	✓ 180° and 360° ✓ 270°	(2)
1			[26]

7.4	For Max Area: $x = -\frac{b}{2a}$	✓A	Formula	
	$x = -\frac{\left(2\sqrt{3}\right)}{\left(-\sqrt{3}\right)}$			
	$2\left(-\frac{\sqrt{3}}{2}\right)$ $2\left(-\frac{\sqrt{3}}{2}\right)$	✓ A	Substitution into formula	(3)
		✓ CA	Answer	
				[11]

8.1	M O B		
	Constr: Join MO and produce to D.	✓ A Construction	
	$ \widehat{AOD} = \widehat{OAM} + \widehat{AMO} \dots (Ext. \ o \angle f \Delta) $	✓A S/R	
	$B\widehat{O}D = O\widehat{B}M + B\widehat{M}O \dots (Ext. \angle of \Delta)$		
	But $0\widehat{A}M = A\widehat{M}O$ and $0\widehat{B}M = B\widehat{M}O$ (Radii =)	✓A S	
	$\therefore A\widehat{O}D + B\widehat{O}D = 2A\widehat{M}O + 2B\widehat{M}O$	✓A S	
	$A\widehat{O}B = 2(A\widehat{M}O + B\widehat{M}O)$	✓A S	
	$A\widehat{O}B = 2\widehat{M}$		(5)
	NOTE No construction: No marks		
8.2.1	$0\widehat{V}A = 0\widehat{D}A = 90^{\circ} \dots (Radius \perp Tangent)$	✓A S/R	
	VODA is a cyclic quad. (Converse of opposite angles of quad. Supplementary)	✓A R	(2)
8.2.2	$\widehat{O}_1 = 40^{\circ}$ (Exterior angle of cyclic quad = int. opp. Angle)	√S ZR	(2)

Mathematics P2 Preparatory Examination Stanperential Stanp

8.2.3	$\widehat{V}_1 = \frac{180^\circ - 40^\circ}{2} = 70^\circ \dots (\text{sum of } \angle s \text{ of } \Delta; \text{ radii})$	~	S/R	
	$\widehat{ADM} = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$ (sum of $\angle s$ of Δ ; Tangents drawn from a common point A)	✓	S/R	
	$\widehat{ADM} = \widehat{O}_2 = 70^{\circ}$ (Angles subtended by common chord	✓S	✓R	
	$ AV\rangle$ $ BV OA$ (Converse of Alt $\angle s$ or Alt $\angle s$ are =) $ OR\rangle$	✓	R	(5)
	In $\triangle OVA$ and $\triangle ODA$			
	OV=OD(radii)			
	OA=OA(common)			
	AV=AD(tans from the same point)			
	$\Delta OVA \equiv \Delta ODA(SSS)$	✓A ∧OV	$A \equiv \Delta ODA(SSS)$	
	$A_1 = A_2 \dots (\equiv \Delta s)$	20 17	$\Delta O VA = \Delta ODA(SSS)$	
	=20°			
	$A_2=V_2(\angle s \text{ in the same segment})$	✓A	S/R	
	=20°			
	$V_1 = 90^{\circ} - 20^{\circ} = 70^{\circ}$	✓A	$V_1 = 70^{\circ}$	
	$O_2=180^{\circ}-\left[OVA+A_1\right]$			
	$=180^{\circ} - [90^{\circ} + 20^{\circ}]$			
	$=70^{\circ}$		$O_2 = 70^{\circ}$	
	$\therefore V_1 = \Theta_2 \dots (both = 70^\circ)$	V A	$O_2 = /O$	
	\therefore BV OA (alt\angles are = or conv.alt\angles)			
		✓A	R	
				[14]

9.1	Divides the other two sides, proportionally.	✓S ✓S	divides the other two sides proportionally	(2)
9.2			•	
	Q M N R			

9.2.1	$\frac{KQ}{3} = \frac{6}{4} \dots (Prop. Thm; KL \parallel QR)$	✓ S/R	
	KQ = 4.5 units	✓ Answer	(2)
9.2.2	$KL = QM \dots (Opposite sides of ^m QKLM are equal)$ $KL = NR \dots (Opposite sides of ^m NKLR are equal)$	✓ S/R ✓ S/R	(2)
	Therefore QM = NR (both = KL) $ \frac{QN}{QR} = \frac{QK}{KP} $ Prop Thm, KN PR $ \frac{4,5}{3} = \frac{3}{2} $ $ \frac{MR}{QM} = \frac{RL}{PL} $ Prop Thm, ML QP $ = \frac{6}{4} = \frac{3}{2} $ $ \therefore \frac{QN}{NR} = \frac{MR}{QM} $ $ \frac{QM+1,8}{NR} = \frac{NR+1,8}{QM} $	$\sqrt{\frac{QN}{QR}} = \frac{QK}{KP}$ Prop Thm, KN PR OR $\frac{MR}{QM} = \frac{RL}{PL}$ Prop Thm, ML QP	
	$\therefore QM(QM+1,8)=MR(NR+1,8)$ $\therefore QM=NR$	$\checkmark \frac{QM+1,8}{NR} = \frac{NR+1,8}{QM}$	[16]

	A 2 2 R B I 2 R M		N	
10.1	In Δ's MQA and MBQ		C/D	
	$\widehat{\mathbf{M}}_1 = \widehat{\mathbf{M}}_1 \dots (Common)$	~	S/R	
	$\widehat{A}_1 = \widehat{Q}_1 \dots \dots (Tan-Chord Theorem)$	✓	S/R	
	$\widehat{AQM} = \widehat{B}_1 \dots (Remaining \angle s \text{ of } \Delta \text{'s})$			(2)
10.2	ΔMQA ΔMBQ(AAA)	✓	R	(3)
10.2	In Δ's MAR and MRB		C	
	$\widehat{M}_2 = \widehat{M}_2 \dots (Common)$	✓	S G/P	
	$\widehat{A}_2 = \widehat{R}_1 \dots \dots (Tan-Chord Thm)$	~	S/R	
	$\widehat{ARM} = \widehat{RBM} \dots (Remaining \angle s \text{ of } \Delta \text{'s})$		D	
	Δ MAR Δ MRB(AAA)	'	R	
	$\frac{MA}{MR} = \frac{MR}{MB} \dots (\Delta's similar)$	✓S	A✓R	
	$MR^2 = AM. MB$			(5)
10.3	$\frac{MQ}{MB} = \frac{MA}{MQ} \dots (from 10.1)$	✓	$\frac{MQ}{MB} = \frac{MA}{MQ}$	
	$MQ^2 = MB. MA =(1)$			
	Also $MR^2 = AM. MB$	✓	$MQ^2 = MB. MA$	
	$Now \frac{MQ^2}{MR^2} = \frac{MB.MA}{AM.MB}$	//	$\frac{MQ^2}{MR^2} = \frac{MB.MA}{AM.MB}$	
	$\therefore \frac{MQ^2}{MR^2} = 1$			
	$\frac{1}{MR^2}$			(4)
				[12]

GRAND TOTAL: 150