

MARKS: 150

DURATION: 3 HOURS

This question paper consists of 15 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless otherwise stated.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise

QUESTION 1

The speeds, in kilometres per hour, of cyclists that passed a point on the route of the Ironman Race were recorded and summarised in the table below:

Speed (km/h)	Frequency (f)	Cumulative Frequency
0< <i>x</i> ≤10	10	10
10 <x≤20< td=""><td></td><td>30</td></x≤20<>		30
20 <x≤30 =="==</td"><td>45</td><td></td></x≤30>	45	
$30 < x \le 40$	72	
$40 < x \le 50$		170

- 1.1 Complete the above table in the ANSWER BOOK provided. (2)
- 1.2 Make use of the axes provided in the ANSWER BOOK to draw a cumulative frequency curve for the above data. (3)
- 1.3 Indicate clearly on your graph where the estimates of the lower quartile (Q1) and median (M) speeds can be read off. Write down these estimates. (2)
- 1.4 Draw a box and whisker diagram for the data. Use the number line in the ANSWER BOOK. (2)
- 1.5 Use your graph to estimate the number of cyclists that passed the point with speeds greater than 35 km/h. (1)

[10]

QUESTION 2

During the month of June patients visited a number of medical facilities for treatment.

The table shows the number of patients treated on certain dates during the month of June

Dates in the month of June	3	5	8	12	15	19	22	26
Number of patients treated	270	275	376	420	602	684	800	820

- 2.1 On **DIAGRAM SHEET 2**, draw a scatter plot of the given data. (3)
- 2.2 Determine the equation of the least squares regression line of patients treated (y) against date (x). (3)
- 2.3 Estimate how many patients have been treated on the 24th of June (2)
- 2.4 Draw the least squares regression line on the grid on DIAGRAM SHEET 2. (3)

- 2.5 Calculate the correlation coefficient of the data. Comment on the strength of the relationship between the variables. (3)
- 2.6 Given that the mean for patients treated on certain dates is 528,63 calculate how many patients were within one deviation of the mean (3)

[17]

QUESTION 3

In the diagram below, A (-3; k), B(4; 8), C(5; 0) and D (-2; -4) are vertices of the parallelogram ABCD. Diagonals AC and BD bisect each other at P. The angles of inclination of AD and BD are α and β respectively. AD cuts the x-axis at E. F is a point in the fourth quadrant.

- 3.1 Determine the gradient of BC. (2)
- 3.2 If the distance between points A(-3; k) and B(4; 8) is 65, calculate the value of k. (4)
- 3.3 Prove, using analytical geometry methods, that $BP \perp AC$. (3)
- 3.4 Calculate the coordinates of F if it is given that ACFD is a parallelogram. (2)
- 3.5 Calculate the size of \hat{EDO} (correct to ONE decimal place). (6)
- 3.6 Calculate the area of $\triangle ADC$. (4)
 - [21]

QUESTION 4

4. A circle with centre at C passes through the origin, O, and also intersects the x-axis at F and the y-axis at E. The tangent to the circle at B (4; 6) intersects the x-axis at K and the y-axis at L

- 4.1 Calculate the length of the radius of the circle. (3)
- 4.2 Determine the equation of the circle in the form $(x-a)^2 + (y-b)^2 = r^2$. (4)
- 4.3 What type of a triangle is $\triangle OBL$? Give reason for your answer. (2)
- 4.4 Determine the equation of the tangent KL. (4)
- 4.5 Determine the co-ordinates of E. (2)
- 4.2.6 Determine whether EF is a diameter of the circle. Show all working. (5)

[20]

QUESTION 5

5.1 If $\tan 58^{\circ} = m$, determine the following in terms of m without using a calculator.

$$5.1.1 \quad \sin 58^{\circ} \tag{2}$$

$$5.1.2 \sin 296^{\circ}$$
 (3)

$$5.1.3 \cos 2^{\circ}$$
 (3)

If $5 \tan \theta + 2\sqrt{6} = 0$ and $0^{\circ} < \theta < 270^{\circ}$, determine with the aid of a sketch and 5.2 without using the calculator, the value of:

5.2.1
$$\sin \theta$$
 (2)

$$5.2.2 \quad \cos\theta$$
 (1)

5.1.3
$$\frac{14\cos\theta + 7\sqrt{6}\sin\theta}{\cos(-240^{\circ}).\tan 225^{\circ}}$$
 (4)

QUESTION 6

5.1 Determine the value of
$$\frac{\cos(180^{\circ} + x) \cdot \tan(360^{\circ} - x) \cdot \sin^{2}(90^{\circ} - x)}{\sin(180^{\circ} - x)} + \sin^{2} x$$
 (6)

5.2.1 Prove the identity:
$$\cos(A-B) - \cos(A+B) = 2\sin A\sin B$$
 (3)

Hence calculate, without using a calculator, the value of 5.2.2 $\cos 15^{\circ} - \cos 75^{\circ}$ (4)

5.3 Find the value of
$$\tan \theta$$
, if the distance between $A(\cos \theta; \sin \theta)$ and $B(6; 7)$ is $\sqrt{86}$.

QUESTION 7

Consider:
$$f(x) = \cos(x - 45^\circ)$$
 and $f(x) = \tan \frac{1}{2}x$ for $x \in [-180^\circ; 180^\circ]$

- Use the grid provided to draw sketch graphs of f and g on the same set of axes for 6.1 $x \in [-180^{\circ}; 180^{\circ}]$. Show clearly all the intercepts on the axes, the coordinates of the turning points and the asymptotes. (6)
- Use your graphs to answer the following questions for $x \in [-180^{\circ}; 180^{\circ}]$ 6.2

6.2.1 Write the solutions of
$$cos(x-45^\circ)=0$$
 (2)

6.2.2 Write down the equations of asymptote(s) of g. (2)

6.2.3 Write down the range of f. (1)
6.2.4 How many solutions exist for the equation
$$cos(x-45^\circ) = tan \frac{1}{2}x$$
? (1)

6.2.5 For what value(s) of x is
$$f(x)g(x) > 0$$
? (3)

[15]

[15]

[17]

QUESTION 7

In the figure below Thabo is standing at a point A on top of building AB that is 45 m high. He observes two cars at C and D respectively. The cars at C and D are in the same horizontal plane as B. The angle

of elevation from C to A is 43° and the angle of elevation from D to A is 50° and $\hat{CAD} = 69^{\circ}$

- 7.1 Calculate the lengths of AC and AD, correct to 2 decimal places. (4)
- 7.2 Calculate the distance between the two cars, the length of CD. (3)

QUESTION 8

PROVIDE REASONS FOR ALL YOUR STATEMENTS AND CALCULATIONS IN QUESTION 8, 9 AND 10

In the diagram, ABCD is a cyclic quadrilateral. G is a point on AD such that BG || CD. ECF

is a tangent to the circle at C. BD is a chord of the circle. $GBD = 30^{\circ}$ and $DCE = 60^{\circ}$

8.1 Calculate, with reasons, the size of:

8.1.1
$$\hat{D}_{1}$$
 (1)

8.1.2
$$\hat{B}_1$$
 (2)

8.1.3
$$\hat{C}_{2}$$
 (1)

8.1.4
$$\stackrel{\frown}{DAB}$$
 (2)

8.2 Is BD a diameter of the circle? Motivate your answer. (2)

QUESTION 9

9.1 In $\triangle ABC$ below, D and E are points on AB and AC respectively such that

DE | BC Prove the theorem that states that $\frac{AD}{DB} = \frac{AE}{EC}$ (6)

9.2 In the diagram below, DGFC is a cyclic quadrilateral and AB is a tangent to the circle at B. 2 Chords BD and BC are drawn. DG and CF produced meet at E and DC is produced to A. EA | |GF.

9.2.1 Give a reason why
$$\hat{B}_1 = \hat{D}_1$$
 (1)

9.2.2 Prove that
$$\triangle ABC \parallel \mid \triangle ADB$$
. (3)

9.2.3 Prove
$$\hat{E_2} = \hat{D_2}$$
 (4)

9.2.4 Prove
$$AE^2 = AD \times AC$$
 (4)

SCHOOL NAME:

Name:	Grade 12

Speed (km/h)	Frequency (f)	Cumulative Frequency
$0 < x \le 10$	10	10
$10 < x \le 20$		30
$20 < x \le 30$	45	
$30 < x \le 40$	72	
$40 < x \le 50$		170

QUESTION 1.2

DIAGRAM SHEET 2

QUESTIONS 2.1 AND 2.4

QUESTION 9.1

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$\sum_{i=1}^n \frac{1}{1-a} \sum_{i=1}^n \frac{1}{2} = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d)$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} \quad ; \quad r \neq 1 \qquad S_n = \frac{a}{1-r} \; ; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc. \cos A \qquad area \ \Delta ABC = \frac{1}{2} \ ab. \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha. \cos \beta + \cos \alpha. \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha. \cos \beta - \cos \alpha. \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha. \cos \beta - \sin \alpha. \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha. \cos \beta. \sin \alpha. \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha. \cos \beta - \cos \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha. \cos \beta - \cos \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha. \cos \beta - \cos \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha. \cos \beta - \cos \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha. \cos \beta + \sin \alpha. \sin \beta$$

$$\sin(\alpha - \beta) = \sin(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \sin(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \cos(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \cos(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta) + \cos(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha. \cos(\alpha. \cos \beta)$$

$$\sin(\alpha. \cos(\alpha. \cos \beta) + \cos(\alpha. \cos(\alpha. \cos \beta)$$

$$\cos(\alpha. \cos(\alpha. \cos \beta) + \cos($$

GRADE 12

MATHEMATICS

MARKING GUIDELINE

MOCK EXAM

SEPTEMBER EXAM PAPER 2

18 AUGUST 2023

MARKS: 150

This marking guideline consists of 14 pages.

	[17]

QUEST	TION 3	
3.1	$m_{BC} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$m_{BC} = \frac{y_2 - y_1}{x_2 - x_1}$ $m_{BC} = \frac{8 - 0}{4 - 5}$	✓ correct substitution into the correct formula
	$m_{BC} = -8$	✓ answer (2)
3.2	$AB = \sqrt{(-3-4)^2 + (k-8)^2}$	✓ substitute A and B into distance formula
	$65 = 49 + k^2 - 16k + 64$	✓ standard form
	$k^2 - 16k + 48 = 0$	✓ factors ✓ k = 4
	(k-4)(k-12)=0	· K · ·
	k = 4 or k = 12	
	k=4	(4)
3.3	$m_{BD} = \frac{8 - (-4)}{4 - (-2)}$	✓ m _{BD}
		$\checkmark m_{AC}$
	$m_{BD}=2$	$\checkmark m_{BD} \times m_{AC}$
	$m_{AC} = \frac{4-0}{-3-5} = -\frac{1}{2}$	
	$m_{AC} \times m_{BD} = 2 \times -\frac{1}{2} = -1$	(3)
	$AC \perp BD$	
3.4	$midpoint \ of \ AC = midpoint \ of \ DC$	✓ x-coordinate
	$\frac{x+(-3)}{2} = \frac{-2+5}{2}$ and $\frac{y+4}{2} = \frac{-4+0}{2}$	✓ y-coordinate
	x = 6 or y = -8	
	F(6;-8)	
3.5	$m_{AD} = m_{BC} = -8$	✓ m _{AD}
	$\tan \alpha = -8$	$\checkmark \tan \alpha = -8$
	$\alpha = 180^{\circ} - \tan^{-1}(8)$	$\checkmark \alpha = 97.13^{\circ}$
	$\alpha = 97,13^{\circ}$	$\checkmark \beta = 63,43^{\circ}$ $\checkmark \alpha = \beta$
	$\tan \beta = m_{BD} = 2$	\sqrt{a} answer
	$\beta = 63,43^{\circ}$	
	$O_1 = 63,43^{\circ} (vert opp \angle^s)$	(6)
	-	

	$E\hat{D}O = \alpha - \beta$	
	$E\hat{D}O = 97,13^{\circ} - 63,43^{\circ} = 33,7^{\circ}$	
3.6	$AC = \sqrt{(5 - (-3))^2 + (0 - 4)^2} = \sqrt{80} = 4\sqrt{5}$	✓ length of AC ✓ length of DP
	$DP = \sqrt{(-2-1)^2 + (-4-2)^2} = \sqrt{45} = 3\sqrt{5}$	✓ correct substitution into formula
	Area of $\triangle ADG = AC \times DP$	✓ answer
	Area of $\triangle ADC = \frac{1}{2} (4\sqrt{5})(4\sqrt{5})$	(4)
	Area of $\triangle ADC = 30$ square units	
		[08]

_		
4		
4.1	$OB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ substitution
	$OB = \sqrt{(-4-0)^2 + (-6-0)^2}$	$\checkmark OB = \sqrt{52}$
	$OB = \sqrt{52}$	$\checkmark r = \sqrt{13}$
	$OB = 2\sqrt{13}$	(3)
	$r = \sqrt{13}$	
4.2	$C\left(\frac{-4+0}{2};\frac{-6+0}{2}\right)$	
	C(-2;-3)	
	$(x+2)^2 + (y+3)^2 = 13$	
4.3	Right-angled triangle, tangent perpendicular to the radius.	✓ right angled Δ ✓ reason (2)
4.4	$y_2 - y_1$	1000011 (2)
	$m_{OB} = \frac{y_2 - y_1}{x_2 - x_1}$	✓ m _{OB}
	$m_{BO} = \frac{-6 - 0}{-4 - 0}$	$\checkmark m_{KL}$
		✓ substitution
	$m_{BO} = \frac{3}{2}$	
		✓ answer (4)
	$m_{KL} = -\frac{2}{3}$	
	$y - y_1 = m\left(x - x_1\right)$	
	$y+6=-\frac{2}{3}(x+4)$	

y = -	$-\frac{2}{3}x - \frac{26}{3}$	
4.5 E(0;-	(6)	✓✓ answer (2)
4.6 (x+2)	$(2)^2 + (0+3)^2 = 13$	✓ x _F
F(-1)	4;0)	$\bigvee y_{F}$
m -	$\frac{-3-0}{3}$	$\checkmark m_{FC}$
$m_{FC} =$	-2+4 2	$\checkmark m_{CE}$
122 -	$-3+6$ _ 3	✓ Points F, C and E
$m_{CE} =$	$-\frac{1}{2}$	are collinear
Points	F, C and E are collinear	(5)
	diameter	
		[20]

5.1.1	$\tan 58^{\circ} = m$ $x^{2} + y^{2} = r^{2}$ $1^{2} + m^{2} = r^{2}$ $\sqrt{1 + m^{2}} = r$	$\checkmark \sqrt{1+m^2} = r$ $\checkmark \text{ answer}$	(2)
	$\sin 58^\circ = \frac{m}{\sqrt{1+m^2}}$		
	$\sqrt{1+\frac{m^2}{58^\circ}}m$		
5.1.2	$\sin 296^{\circ} = -\sin 64^{\circ}$ $\sin 296^{\circ} = -\sin 2(32^{\circ})$ $\sin 296^{\circ} = -2\sin 32^{\circ} \times \cos 32^{\circ}$	✓ −sin 64° ✓ substitution ✓ answer	
	$\sin 296^{\circ} = -2 \times \frac{m}{\sqrt{1+m^2}} \times \frac{1}{\sqrt{1+m^2}}$ $\sin 296^{\circ} = -\frac{2m}{1+m^2}$		(3)
5.2.1	$5\tan\theta + 2\sqrt{6} = 0$		

6.1	$\frac{\cos(180^{\circ} + x) \cdot \tan(360^{\circ} - x) \cdot \sin^{2}(90^{\circ} - x)}{\sin^{2}(90^{\circ} - x) + \sin^{2}x}$	$\sqrt{-\cos x}$
	$\frac{\sin(180^{\circ} - x) + \sin^2 x}{\sin(180^{\circ} - x)}$	\checkmark – tan x
		$\checkmark \cos^2 x$
	$=\frac{(-\cos x).(-\tan x).\cos^2 x}{(\cos^2 x)} + \sin^2 x$	$\checkmark \sin x$
	$=$ $+ \sin^2 x$	$\checkmark \cos^2 x + \sin^2 x$
		✓ answer
	$\cos x$. $\sin x$. $\cos^2 x$	
	$=\frac{\cos x}{\cos x} + \sin^2 x$	
	$\sin x$	(6)
	$= \cos^2 x + \sin^2 x$	(0)
	= 1	
6.2.1	$\cos(A - B) - \cos(A + B)$	√
	$= \cos A \cos B + \sin A \sin B - [\cos A \cos B - \sin A \sin B]$	✓
		✓
	$= \cos A \cos B + \sin A \sin B - \cos A \cos B + \sin A \sin B$	
	= 2sin A sin B	(3)
6.2.2	$\cos 15^{\circ} - \cos 75^{\circ} = \cos(45^{\circ} - 30^{\circ}) - \cos(45^{\circ} + 30^{\circ})$	√
	= 2sin 45°.sin 30°	✓
		✓
	$= 2 \times \frac{\sqrt{2}}{2} \times \frac{1}{2} \text{or/of} 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{2}$	
	$=\frac{\sqrt{2}}{2}$ or/ of $\frac{1}{\sqrt{2}}$	(4)
	OR	
	$\cos 15^{\circ} - \cos 75^{\circ}$	
	$= \cos(45^\circ - 30^\circ) - \cos(45^\circ + 30^\circ)$	
	= cos 45°cos30°+sin45°sin 30°- [cos 45°cos 30°-	
	$\sin 45^{\circ} \sin 30^{\circ}$ $= 2\sin 45^{\circ} \sin 30^{\circ}$	
	$= 2 \times \frac{\sqrt{2}}{2} \times \frac{1}{2} \text{or/of} 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{2}$	
	$= \frac{\sqrt{2}}{2} \text{orl of} \frac{1}{\sqrt{2}}$	2001
	$=\frac{1}{2}$ on $\frac{1}{\sqrt{2}}$	
		ゴ

6.3	$AB^2 = (\cos \theta - 6)^2 + (\sin \theta - 7)^2$	✓
	$86 = \cos^2\theta - 12\cos\theta + 36 + \sin^2\theta - 14\sin\theta + 49$	✓ ✓
	$86 = 1 + 36 + 49 - 12\cos\theta - 14\sin\theta$	
	$0 = -12\cos\theta - 14\sin\theta$	
	$14\sin\theta = -12\cos\theta$	(4)
	$\frac{\sin \theta}{\theta} = \frac{-12}{11}$	
	$\cos \theta$ 14	
	$\tan\theta = -\frac{6}{7}/-0.86$	

7.1 y 1.5 0.5 180 -135 -90 -5 -45 -90 13 180 x -0.5	✓ shape f ✓ intercepts ✓ turning point ✓ shape f ✓ intercepts ✓ turning point (6)
7.2.1 $x = -45^{\circ} \text{ or } x = 135^{\circ}$	✓ ✓ answer (2)
7.2.2 $x = 180^{\circ} \text{ or / of } x = -180^{\circ}$	✓ ✓ answer (2)
7.2.3 $y \in [-1;1]$ or/of $-1 \le y \le 1$	✓ answer (1)
7.2.4 1 7.2.5 $x \in (-180^{\circ}; -45^{\circ})$ or/of $(0^{\circ}; 135^{\circ})$	✓ answer (1)
$1706 + 16(-180^{\circ} - 40^{\circ}) $ or for $10^{\circ} \cdot 130^{\circ}$	
7.2.0	✓ end points
OR	✓ end points ✓ notation
7.2.0	✓ end points

	45 m B 50° C	
7.1	$\sin 43^\circ = \frac{45}{AC}$	$\checkmark \sin 43^\circ = \frac{45}{AC}$
	AC = 66m	✓ AC
		$\checkmark \sin 43^\circ = \frac{45}{AC}$
	$\sin 43^\circ = \frac{45}{AC}$	1
	$\sin 50^\circ = \frac{45}{AD}$	✓ AD
		(4)
7.2	AD = 58,74m	
7.2	$CD^{2} = AC^{2} + AD^{2} - 2AC.AD\cos 69^{\circ}$	✓ using cosine rule ✓ substitution
	$CD^{2} = (66)^{2} + (58.74)^{2} - 2(66)(58.74)\cos 69^{\circ}$	Substitution
	$CD^2 = 5027,72$	✓ answer
	CD = 70.91m	(3)

9.1	A	
9.1		✓ constr
	h h	√S
	D E	√S
	B	√S √R
	Construction: Connect DC and BE and draw the altitudes <i>k</i> and <i>h</i>	√conclusion
	$\frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{BDE}} = \frac{\frac{1}{2} \times \text{AD} \times k}{\frac{1}{2} \times \text{BD} \times k} = \frac{\text{AD}}{\text{BD}}$	(6)
	$\frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{DEC}} = \frac{\frac{1}{2} \times \text{AE} \times h}{\frac{1}{2} \times \text{E}C \times h} = \frac{\text{AE}}{\text{EC}}$	
	but/maar: Area ΔBDE = Area ΔDEC [DE common base and DE BC/ DE gemeensk basis en DE BC]	
	$\therefore \frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{BDE}} = \frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{DEC}}$	
	$\therefore \frac{AD}{BD} = \frac{AE}{EC}$	
9.2.1	tangent-chord theorem	✓ R (1)
9.2.2	In ΔABC and ΔADB:	√s
	$\hat{A}_1 = \hat{A}_1$ [common/gemeenskaplik]	78696
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{D}}_1$ [proven/bewys in 10.2.1]	✓ S
	$\therefore \triangle ABC \mid \mid \mid \triangle ADB \mid [\angle; \angle; \angle]$ OR	✓ R
	In ΔABC and ΔADB:	
	$\hat{A}_1 = \hat{A}_1$ [common/gemeenskaplik]	✓S
	$\hat{B}_1 = \hat{D}_1$ [proven/bewys in 10.2.1]	✓ S
	$B\hat{C}A = \hat{B}_2 \qquad [\angle s \text{ of } \Delta = 180^\circ]$	✓ R
3000 100 200	∴ ∆ABC ∆ADB	7.0
9.2.3	$\hat{E}_2 = \hat{F}_1$ [verwiss $\angle e/alternate \angle s$; EA GF]	✓ S ✓ R
	$\hat{\mathbf{F}}_1 = \hat{\mathbf{D}}_2$ [ext \angle of cyc quad DGFC/buite \angle v kdvh DGFC]	✓S ✓R
	$\therefore \hat{E}_2 = \hat{D}_2$	

9.2.4	In ΔAEC and ΔADE:	√S
AS AND STORY OF	$\hat{A}_2 = \hat{A}_2$ [common/gemeenskaplik]	
	$\hat{E}_2 = \hat{D}_2$ [proven/bewys in 10.2.3]	✓ S
	$\Rightarrow \Delta AEC \Delta ADE [\angle ; \angle ; \angle]$	✓ R
	$\frac{\overrightarrow{DOAD}}{\overrightarrow{DOAD}} = \frac{\overrightarrow{AC}}{\overrightarrow{AE}}$	✓ S
	$DDAE^2 = AD \times AC$	
	In ΔAEC and ΔADE:	
	$\hat{A}_2 = \hat{A}_2$ [common/gemeenskaplik]	✓S
	Z Z	V 5
	$\hat{E}_2 = \hat{D}_2$ [proven/bewys in 10.2.3]	✓ S
	$\hat{ACE} = \hat{G}_1$ [\(\angle \text{s of } \Delta = 180^\circ \text{OR ext } \angle \text{ of cyc quad DGFC/}\)	✓ R
	buite ∠ v kdvh DGFC]	· K
	∴ ΔAEC ΔADE	
	$\therefore \frac{AE}{AD} = \frac{AC}{AE}$	
		✓ S
	$\therefore AE^2 = AD \times AC$	
9.2.5	$\frac{AB}{AD} = \frac{AC}{AB} \qquad [\Delta ABC \mid \mid \Delta ADB]$	√S
	$AB^2 = AD \times AC$	√S
	$= AE^2$ [from 10.2.4]	√S
	∴AB = AE	
		[21]

